TC 824 C2 A2 no. 130:63 v. 5 Appx. D-E c. 2

LIBRARY

State of California THE RESOURCES AGENCY Department of Water Resources

BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

Volume V: SOUTHERN CALIFORNIA

Appendix D: SURFACE WATER QUALITY Appendix E: GROUND WATER QUALITY

APRIL 1965

HUGO FISHER Administrator The Resources Agency

OP

EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources

Ali ~ 005

State of California THE RESOURCES AGENCY Department of Water Resources

BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

Volume V: SOUTHERN CALIFORNIA

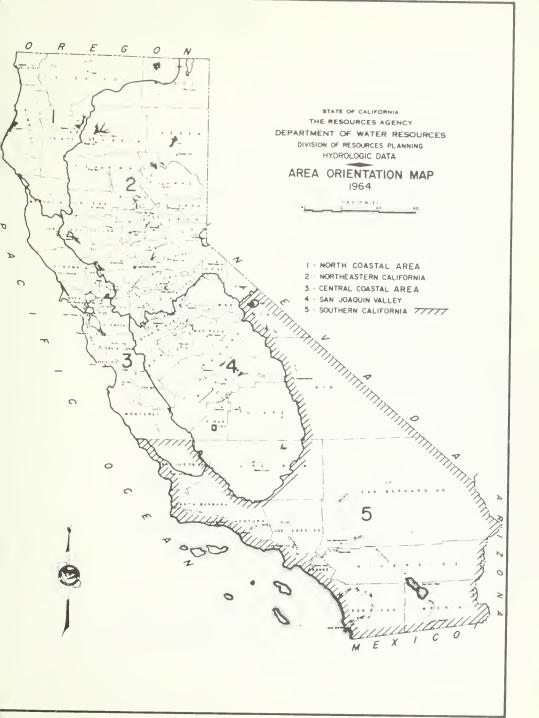
Appendix D: SURFACE WATER QUALITY Appendix E: GROUND WATER QUALITY

APRIL 1965

HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California

WILLIAM E. WARNE Director Department of Water Resources

ORGANIZATION OF BULLETIN NO. 130 SERIES


Volume I - NORTH COASTAL AREA Volume II - NORTHEASTERN CALIFORNIA Volume III - CENTRAL COASTAL AREA Volume IV - SAN JOAQUIN VALLEY Volume V - SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and

Appendix A - CLIMATE Appendix B - SURFACE WATER FLOW Appendix C - GROUND WATER MEASUREMENTS Appendix D - SURFACE WATER QUALITY Appendix E - GROUND WATER QUALITY

FIGURE I

TABLE OF CONTENTS

	Page
INTRODUCTION	l
Hydrologic Area Coding System	l
Stream Sampling and Well Designation	2
Stream Sampling Station Numbering System	2
Well Numbering System	2
Field Methods and Procedures	3
Surface Water Sampling	3
Ground Water Sampling	4
Laboratory Methods and Procedures	5

FIGURES

Figure No.

1 Area Orientation Map Frontispiece

PLATES

(Plates listed below are bound at the end of these appendixes)

Plate No.

D-1	Location of Surface	Water	Quality	Monitoring	Program
	Stations 1962-63				

E-1 Location of Areas Monitored for Ground Water Quality Changes, 1963

APPENDIXES

Appendix

D	SURFACE	E WATER	QUALITY	DATA	٠	•	•	•	•	•	•	•	D-i
E	GROUND	WATER	QUALITY	DATA		•	•			•			E-i

INTRODUCTION

These appendixes contain surface water quality data for the 1962-63 water year and ground water quality data for the 1963 calendar year for Southern California. This area is shown on Figure 1. Appendix D contains detailed information on surface water quality at stations whose locations are shown on Plate D-1. Appendix E contains detailed information on ground water quality in areas shown on Plate E-1.

To facilitate the processing of basic hydrologic data published in this report, numerical and letter codes are used to designate hydrologic areas, stream sampling stations, and wells. These coding systems are described in the following paragraphs.

Hydrologic Area Coding System

The hydrologic area coding system is based on a decimal numbering system, in the form A-ll.Al, comprising two alphabetical characters and three digits. The alphabetical character to the left of the dash refers to drainage province. The boundaries of these provinces correspond to the regional water pollution control board boundaries, with exception of the Los Angeles-Orange and Los Angeles-San Bernardino county boundary. The final four positions of the areal designation code comprise two digits to the left of the decimal, which refer to the hydrologic unit, and one alphabetical character and one digit to the right of the decimal, which refer to the hydrologic subunit and hydrologic subarea, respectively. A discussion of this system is presented in Chapter II of the text to Volume V, Bulletin 130-63. Attachments 1 through 6 in Volume V, Bulletin 130-63, contain a cross-reference between this new system of areal designation and the old ground water basin numbering system along with plates showing these areas.

-1-

Stream Sampling and Well Designation

To designate the stream sites and wells sampled to obtain data presented in this report, the systems described below were used.

Stream Sampling Station Numbering System

The numbering system used to designate stream sampling stations in this report consists of the name of the stream and a brief description of the location of the sampling point. The stations are also identified by an arbitrary numbering system used only for ready reference. Stations in California are numbered sequentially with number consisting of a numeric and sometimes also an alphabetic designation. An example of a station number is Station No. 65c.

Well Numbering System

The state well numbering system used in this report is based on township, range, and section subdivision of the Public Land Survey. It is the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report the number of a well, assigned in accordance with this system, is referred to as the State Well Number.

Under the system each section is divided into 40-acre tracts lettered as follows:

D	С	В	A
E	F	G	Н
М	L	K	J
N	Р	ୟ	R

Note that I and O are omitted in the grid above.

-2-

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, a well which has the number 9N/32W-17Gl, S, would be in Township 9 North; Range 32 West, Section 17, San Bernardino Base and Meridian, and would be further designated as the first well assigned a State Well Number in tract G. Well numbers are referenced to the Mount Diablo Base and Meridian (M), the San Bernardino Base and Meridian (S), or the Gila and Salt River Base and Meridian (G).

Field Methods and Procedures

In collecting samples of surface and ground waters, a number of agencies cooperated with the Department of Water Resources. These agencies are listed below. The procedures followed for collecting samples are also discussed.

Surface Water Sampling

Agencies that participated in the field sampling program during 1962 and 1963, together with the number of surface water stations sampled by each agency, are:

Agency	Number of stations sampled
Department of Water Resources	47
The Metropolitan Water District of Southern California	2
Los Angeles City Health Department	1
Los Angeles Department of Water and Power	1
Long Beach City Health Department	1
City of San Bernardino	2
Total	54

In the continuing program, water samples are collected in May and September for mineral, radiological, bacteriological, and trace elements analyses. In the northern portion of the Southern District, water samples are collected monthly, and in the southern portion, bimonthly for partial mineral and bacteriological analyses. Colorado River stations are sampled only twice a year. The water samples collected for bacteriological examination are kept in portable ice boxes until delivered to the laboratory. All water samples are transported to the laboratories as expeditiously as possible.

At the time the samples are collected for laboratory examination, field determinations are made for dissolved oxygen by the modified Winkler method; water temperature; and pH. These data are included in Appendix D. Visual inspection is made of the stream or lake and the physical conditions are noted.

Where possible, the sampling stations have been selected so as to be at or near stream-gaging stations so that gage heights can also be recorded at the time the water samples are collected. Instantaneous stream discharges at the time of sample collection are then obtained. In the absence of gaging stations, streamflow is estimated by other methods.

Ground Water Sampling

The ground water quality monitoring program in the Southern District is conducted with the assistance of many cooperating local agencies. They are as follows:

- San Luis Obispo County Flood Control and Water Conservation District
- United States Geological Survey, Santa Barbara County Subdistrict Office

-4-

Ventura County Department of Public Works Los Angeles County Flood Control District San Bernardino County Flood Control District Riverside County Flood Control and Water Conservation District Orange County Flood Control District United Water Conservation District, Ventura County City of Long Beach Los Angeles Department of Water and Power United States Geological Survey, Southern California Subdistrict Office

Sources are identified by state well number, for which precise location information is on record. A water sample is collected in either a gallon or half-gallon container, of glass or plastic. The required sample should be taken at the pump after it has been pumping for five or more minutes. Temperature, color, odor, and taste of samples are noted and recorded as soon as they are collected.

Separate samples are collected for radioactivity analysis, trace element analysis, or special analyses when such analyses are deemed necessary.

Laboratory Methods and Procedures

Methods of mineral, radiological, and bacterial analyses, used by the Department of Water Resources, in general, are those described in the American Public Health Association publication "Standard Methods for the Examination of Water and Sewage", 11th edition, 1960. In some cases, the methods described in the following publications also have been employed:

U.S. Geological Survey, "Methods for Collection and Analysis of Water Samples", Water Supply Paper 1454, 1960.

California Department of Public Works, Division of Water Resources, "Methods of Analysis", October 1955.

-5-

Mineral analyses are reported in parts per million (ppm) and bacterial analyses as most probable number per milliliter (MPN). Radioassays are reported as micro-microcuries per liter (uuc/l), the exact equivalent of pico-curies per liter (pc/l).

Heavy metals (trace elements) are reported as parts per million for the May 1963 analyses, which were performed by Terminal Testing Laboratories Incorporated at Los Angeles. The trace elements analyses for September 1963 are reported as parts per billion (ppb). These analyses were performed by the United States Geological Survey Laboratory at Sacramento, California, and used a newly developed spectrographic procedure perfected by that Laboratory. Limitations in the precision of measurements in spectrographic analyses frequently require the reporting of results as less than or more than the amounts presented, as is indicated in the footnotes accompanying the tables.

Oil and grease, phenols, alkalinity, 5-day biochemical oxygen demand (BOD), dissolved oxygen (DO), and free carbon dioxide (CO_2) are reported as parts per million, as are values for alkyl benzene sulfonate (ABS), the major constituent in present-day household synthetic detergents.

The radioassays of ground water samples were performed by several laboratories and have not followed the sampling and counting procedures discussed in the preceding paragraphs. Because ground water activity levels have historically proved to be quite low, usually only total activity (alpha plus gross beta-gamma activity) has been assayed. If total activity exceeds 100 uuc/l, alpha activity is determined.

It should be pointed out that determinations of some of the reported constituents are not absolute, but merely indicative of levels of

-6-

water quality. The purpose of these data is to help the investigator judge whether further, more intensive investigation is warranted to identify a source of pollution or to trace the movement of pollution.

Machine methods of data processing are being developed and tables E-l through E-6 have been tabulated by machine. By putting the data on machines, the Department should soon be able to supply the user precisely the data he needs - so far as they are available in the Department.

APPENDIX D

SURFACE WATER QUALITY DATA

1 TIGHTYLA

AND THE ADD BUILDED STATES

TABLE OF CONTENTS

APPENDIX D

Table No.		Page
	Sampling Station Data and Index	
D- 1	Surface Water Station Locations	D- 1
	Analyses of Surface Water	
D O		
D- 2	Central Coastal Drainage Province (T)	D- 4
D- 3	Los Angeles Drainage Province (U)	D- 7
D- 4	Lahontan Drainage Province (W)	D-26
D- 5	Colorado River Basin Drainage Province (X)	D-28
D- 6	Santa Ana Drainage Province (Y)	D-42
D- 7	San Diego Drainage Province (Z)	D-50
	Padioganya of Currence Nator	
	Radioassays of Surface Water	
D- 8	Central Coastal Drainage Province (T)	D-59
D- 9	Los Angeles Drainage Province (U)	D- 60
D-10	Lahontan Drainage Province (W)	D-67
D-11	Colorado River Drainage Province (X)	D-68
D-12	Santa Ana Drainage Province (Y)	D-70
D-13	San Diego Drainage Province (Z)	D-71
	Spectrographic Analyses of Surface Water	
D-14	Central Coastal Drainage Province (T)	D-72
D-15	Los Angeles Drainage Province (U)	D-74
D-16	Colorado River Drainage Province (X)	D-76
D-17	Santa Ana Drainage Province (Y)	D-78
D-18	San Diego Drainage Province (Z)	D-80

FOR TABLES D-2 THROUGH D-7 FOOTNOTES

MINERAL ANALYSES OF SURFACE WATERS

Field pH

- in pairs by Department of Water Resources, made by State of California Tests made by agency reporting analysis. Tests on samples collected Department of Public Health, Division of Laboratories, Los Angeles, California. . 0, 5
 - The Metropolitan Water District of Southern California (MWD) City of Los Angeles Department of Water and Power (LADWP) Long Beach City Department of Public Health (IBDPH) or Analyses made by Department of Water Resources (DWR) Los Angeles City Department of Public Health (LADPH) ΰ

TABLE D-I

SAMPLING STATION DATA AND INDEX

SURFACE WATER STATION LOCATIONS YEARS 1962-1963

Station	Station Number	Location ⁰	Period of Record	Frequency ^C of Sampling	Sompled by	Anolysis
Alamo River			Record	Sampling		page
At International Boundary	59	175/16E-18	February 1951	в	DWR	D-35, D-68
Near Calipatria	60	115/13E-22	March 1951	в	DWR	D-36, D-68
All American Canal				-	2000	2 30, 1=00
Near Pilot Knob	560	165/21E-24	May 1953	s	DWR	D-32, D-68
Chino Creek						
Near Chino	86	2S/ 8W~36	April 1952	м	DWR	D-48, D-70
Colorado River						
Near Topock, Arizona	54	7N/24E- 8	April 1951	s	DWR	D-28, D-68, D-77
Lake Bavasu, Colorado River Aqueduct at Intake	56a	3N/27E-28	November 1953	м	MWD	D-29, D-68
Aqueduct at La Verne	69	15/ 9W- 6	April 1951	M composite	MWD	D-24, D-25, D-65, D-1
Below Parker Dam	55	2N/27E-16	April 1951	s	DWR	D-30, D-68
Near Blythe	56e	75/23E- 2	May 1953	S	DWR	D-31, D-68
At Yuma, Arizona	56	165/23E-36	April 1951	s	DWR	D-33, D-68, D-76, D-
Below Morelos Dam	56ъ	8s/24w-28e	May 1953	s	DWR	D-34, D-68
Cuyama River		- 1				
Near Garey	44a	10N/33W-25	October 1958	м	DWR	D-4, D-59, I-7
Escondido Creek						
Near Harmony Grove	63	125/ 2W-30	March 1951	в	DWR	D-52, D-71, D-80, D-
Lake Elsinore						
At North Shore	89	6s/ 5W- 1	February 1952	в	DWR	D-49, D-70
Forester Creek						
At Mission Gorge Road	65a	155/ 1W-28	November 1957	В	DWR	D-55, D-/1
Los Aogeles Aqueduct						
Near San Fernando	70	3N/15W-30	April 1951	м	LADWP	D-22, D-23, D-61, D-
Los Angeles River						
At Figueroa Street	47	13/13W-15	April 1951	м, з	LADPH, DWR	D-14, D-60, D-74, D-
At Pacific Coast Highway	48	45/13W-26	April 1951	м, s	LBDPH, DWR	D-15, D-16, D-60, D.
Matilija Creek						
Above Dam	450	5N/23W-19	May 1953	м	DWR	D-7, T-60
Miasion Creek						
At Whittier Narrows	49a	25/11W- 6	April 1951	м	DWR	D-19, D-61, D-74
Mojave River						
At The Forks	67a	3N/ 3W-18	July 1957	м	DWR	D-26, D-67
Near Victorville	67	6N/ 4W-29	March 1951	м	DWR	D-27, D-67
New River						
At International Boundary	57	17S/14E-14	April 1951	в	DWR	D=37, D-68
Near Westmorland	58	12S/13E-30	February 1951	в	DWR	D-38, D-69
Piru Creek						
Near Piru	46c	4N/18W-20	June 1957	м	DWR	D-11, P-6

a. Except as iodicated below location is referenced to San Bernardino Base and Meridian.
b. Beginning of record.
c. M - Moothly, B - Semiannually.
d. DNR, Department of Water Resources; MAD, Metropolitan Water District; LADPH, Los Angeles Department of Public Eealth; LEDPH, Long Beach Department of Public Health.
c. Gila and Salt River Base and Meridian.

TABLE D-I SAMPLING STATION DATA AND INDEX

SURFACE WATER STATION LOCATIONS YEARS 1962-1963 (continued)

(continued)												
Station	Station	Location	Period	Frequency ^C of	Sompled	Analysis						
31011011	NUMBER		Record	Sompling	by	an Poge						
Rio Hondo												
At Whittier Narrows	49	2s/11w- 6	April 1951	М	DWR	D-17, D-61, D-74, D-75						
Above Spreading Grounds	496	2S/12W-12	Мау 1963	м	DWR	D-18, D-61, D-75						
Salton Sea												
At Salton Sea State Park	68a	7S/10E- 2	March 1955	В	DWR	D-39, D-69						
San Diego River												
At Old Mission Dam	65	15S/ 2W-25	April 1951	в	DWR	D-54, D-71						
Near Mission Gorge Road	65c	15S/ 2W-35	July 1902	В	DWR	D-56, D-71, D-80						
San Dieguito River												
Below San Pasqual Valley	64	135/ 2W- 1	April 1951	в	DWR	D-53, D-71						
Jan Gabriel River												
At Azusa Powerhouse	50d	1N/10W-22	March 1957	М	DWR	D-20, D-61, D-75						
At Whittier Narrows	50	2S/11W- 5	April 1951	М	DWR	D-21, D-61						
San Luis Rey Diver												
Near Pala	62	95/ 2W-36	March 1951	В	DWR	D-51, D-71						
Santa Ana River												
Near Muntone	51b	13/ 2W- 4	April 1951	м	DWR	D-42, D-70, D-79						
Near Arlington	51	23/ 6W-25	January 1951	м	DWR	D-43, D-70, D-78, D-79						
Near Norco	5le	23/ 7 W-3 0	April 1951	м	DWR	D-44, D-70, D-78, D-79						
Below Prado Dam	51a	33/ 7 w-2 9	April 1951	м	DWR	D-45, D-70, D-78, D-79						
Santa Clara River												
At Los Angeles-Ventura County Line	46	4N/17W-30	April 1951	м	DWR	D-9, D-60, D-74, D-75						
Near Santa Paula	46a	3N/21W-12	April 1951	м	DWR	D-10, D-60, D-74, D-75						
Santa Margarita River		1										
Near Fallbrook	51c	95/ 4W-12	February 1951	В	DWR	D-50, D-71						
Santa Paula Creek												
Near Santa Paula	46e	4N/21W-27	June 1957	м	DWR	D-13, D-60						
Santa Ynez River												
At Cachuma Reservoir	446	6N/30W-19	April 1958	М	DWR	D=5, D-59, D-73						
Near Solvang	45a	6N/31W-22	April 1951	м	DWR	D-6, D-59						
Sespe Creek												
Near Fillmore	46a	4N/20W-12	June 1957	М	DWR	D-12, D-60						
Spring Valley Creek												
Near La Pressa	65ъ	173/ 1W-17	March 1958	В	DWR	D-57, D-71						
<u>Tia Juana River</u>												
At International Boundary	66	195/ 2W- 1	April 1951	В	DWR	D-58, D-71						
Ventura River												
Near Ventura	61	3N/23W- 8	May 1951	Μ	DWR	D-8, D-61, D-74, D-75						
Warm Creek												
At Colton	50ъ	15/ 4W-21	April 1951	М	City of San Bdno.	D=46, D-70, D-78, D-79						

a. Except as inducated below location is referenced to San Bernardino Base and Meridian

a. Except as initiated below inclusion is referenced to can be marine base and secretaria
 b. Beginning of record
 c. M - Monthly, B - Bimonthly, S - Semiannually
 d. DWH, Department of Nuter Resources; NWD, Metropolitan Water District; LADPH, Los Angeles Department of Public Health; LEDPH, Long Beach Department of Public Health.

TABLE D-I

SAMPLING STATION DATA AND INDEX

SURFACE	WATER	STATION I	LOCATIONS
	YEARS	1962-1963	3

	YEA (RS 1962-1963 continued)				
Station	Station Number	Location	Period of Record	Frequency ^C of Sompling	Sampled ^d by	Anolysis on poge
Warm Creek			5			
At San Bernardino	50c	1S/ 4W-15	April 1951 through 1963	М	DWR	D-47, D-70
Whitewater River						
Near Whitewater	68	35/ 3E- 2	February 1951	В	DWR	D-40, D-69
Near Mecca	68B	73/ 9E-31	July 1957	В	DWR	D-41, D-69

<sup>a. Except as indicated below location is referenced to San Bernardino Base and Meridian.
b. Beginning of record.
c. M - Monthly, B - Bimonthly, S - Semiannually.
d. DMR, Department of Water Resources; MMD, Metropolitan Water District; LADPH, Los Angeles Department of Public Health; LEDPH, Long Beach Department of Public Health.</sup> .

		Anolyzed by C	T						DWR			DWR	DWR	DWR			
	4	ae CaCO3 ity MPN/mi						240			540	62 62	7000 1300				
F	rur-							~			55	<25	25				
-	-	20°3	E C C						574			353	520	564			
		De Co	e dd						846			541	722	802			
	Par-	sad -							%			27	8	25			
	Totol	solids							1589			989	1319	1408			
		Other constituents										$PO_{14} = 0.0$ ABS = 0.03					
		Silica (SiO)										의	∝) I	<i>Ф</i> Т			
	lion	Boron (B)	;						0.33			0.30	0.32	0.33			
Ē	per milion	Flua-							0.95			0.83 0.04	0.92	1.0 0.05			
121	- 1	Ni- trate	-+					00				1.2 0.02	0.50 0.00	0. lt 0. 00			
6 0	equivalents	Chia- ride	+						92 2.59			57 1.61	79	86 2.43			
		Sul - fare	-+						15+39				649 13.52	682 14.20			
	STIDUTS	Bicor - banate	- 1						332 5.44			229 467 3.76 9.73	246	2300			
Marriel accession	a cons	Carbon - B	(co ₃) (0.00			0.00	0.00	0.00			
M	19 UIM		(X)						5.8 0.15			4.8 0.12 0.12	4.8 0.12	14.7 0.12			
		Sodium Po							141 5.13 0			91 3.96 0	120 1	126 4 5.48 7			
		-92 B	(6		-							56 9. 4.58 3	87 11	91 1 7.45 5			
		-angow m	W)						§ 2.49								
L		Catcium							<u>189</u>			125 6*24	146	172 8.58			
		Hd							7.9			7.9	7.8	7.8			
	Specific	conductance (micramhos							2033			1332	1698	1821			
			Sol						72			8	110	137			
		Dissolved oxygen	ppm %						8.0			00 00	9*0	11.0			
		Temp In of							52			58	81	8			
		Discharge Temp in cfs in oF			Dry No flow	Dry No flow	Dry No flow	Dry No flow	l est.	Dry No flow	Dry No flow	15 est.	l est.	est.	Dry No flow	Dry No flow	
			P S.T	Water Year 1962-1963	10-2-62 0750	11-14-62 0725	12-4-62 0750	1-15-63 0745	2-5-63 0750	3-5-63 0730	4-2-63 0945	5-6-63 1005	6-3-63 1545	7-1-63 1410	8-1-63 0730	9-1-63 1530	

ANALYSES OF SURFACE WATER TABLE D-2

CENTRAL COASTAL DRAINAGE PROVINCE T CUTAMA RIVER NEAR GAREY (Station 44a)

TABLE D-2 ANALYSES OF SURFACE WATER

CENTRAL COASTAL DRALLAGE FROVINCE T SANDA YNEZ RIVER AT CACHUMA RESERVOIR (Tration $l_{\rm }l_{\rm }b$)

	Anolyzad by C		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
	Hordness bid - Caliform ^D os CaCO ₅ ity MPN/mi Totol N C		45 45	0.0 0.0	0.46 0.6	0.45	0.45	0.6 2.3	1.3 0.6	6.2 23	0.6 23	23 6.2	.60	24 0.6
Tur-	hid - X		<25	<25	25	< 25	<25	<25	< 25	< 25	25	< 25	< 25	~ 22
	acos N C	E d	173	174	172	172	143	144	151	151	175	183	167	175
	F	E a	335	34 3	340	337	313	310	316	323	347	355	327	321
d .	and and and		51	51	19	8	52	55	22	21	8	20	23	52
Totol	solved solids in ppm									503				532
	Other constituents									$PO_{\rm L} = 0.24$ ABS = 0.05				
	Silica (SiO ₂)					-				σI			-	
lton	Boran (B)		0.39	0.35	0.31	0.31	0.37	0.42	0.34	0.33	0.34	0.32	0.45	0.40
million per million	Fluo- ride (F)									0.46 0.02				0.60
parts per million equivalents per mil	N:- trats (NO ₃)									1.2 0.02				
9 1 1 1 1	Chio- ride (CI)		17 0.48	14 0.39	15	<u>16</u> 0.45	15 0.42	15 0.42	14 0.39	<u>14</u> 0.39	18 0.51	14 0.39	<u>16</u> 0.45	15 0.42
Ē	Sul - fots (SOA)									217 4.52				
Mineral constituents	Bicar - bonate (HCO ₄)		<u>198</u> 3.24	206 3.38	205	201	207 3.40	202 3+32	201 3+30	210 <u>3.44</u>	210 3.44	210 <u>3+44</u>	<u>3,20</u>	<u>2.92</u>
teral ca	Corban - 016 (CO3)		0*00	0 <u>*00</u>	0.00	0.00	0.00	0 <u>*00</u>	0.00	0 0 <u>,00</u>	0 <u>00</u> 0	0.00	0.00	0.00
W	Potas- sium (K)									<u>3.7</u> 0.09				
	Sodium (No)	1	41 1.78	41 1.78	37 1.61	38 <u>1.65</u>	41 1.78	41 1.73	40 1.74	41 1.78	40 1.74	41 1.78	46 2+00	42 1.83
	Mogne- s:um (Mg)									36 2+92				
	Calcium (Ca)									$\frac{71}{3.54}$				
	е ц	1	8.2	7.5	7.6	1.7	8.2	7.8	8.2	8.3	8.4	7.9	8.5	£. €
Specific	conductance (micromhos at 25°C)		784	788	062	L1.L	789	783	760	0170	776	764	768	756
			102	8	76	67	122	77	17	18	110	118	114	116
	Dissolved osygen ppm [9/oSof		8.8 102	8.4	9*1	7.2	12.4	8.0	0°0	8.2	10.0	10.8	10.2	10.0
	Temp oF		t <u>t</u>	Ę,	60	54	60	57	58	65	69	69	02	72
Page Hiddt	above Temp (-below) in OF Spillway		4.85 to spill	5.75 to spill	6.15 to spill	-6.85 to spill	-7.12 to spill	-6.78 to spill	-6.70 to spill	-6.68 to spill	-7.17 to spill	-8.00 to spill	-9.38 to spill	-11.43 td spill
	P.S.T	Water Year 1962-1963	10-1-62 1505	11-14-62 0850	12-5-62 0930	1-15-63 1050	2-5-63 1030	- 3-5-63	4-2-63 1105	5-6-63 1430	6-4-63 1100	7-1-63 1640	8-1-63 1915	9-463 0830

		Anolyzed by C	<u> </u>				DWR	DWR	DWR	DWR	DWR	DWR				
		Hordness bid - Coliform ⁰ os CoCO ₃ I ¹ y MPN/mi Tolo ¹ N C PPm PPm					53 23	62 62	13	6+2 50	333	130				
	Tur -	- piq - hid mod u					52	52	52	52	52	52				
		Hordness os CoCO ₃ Toto! N C ppm ppm					279	223	204	173	182	503				_
							626	564	480	462	⁴⁵⁶	525				
	0	ture of the of t					18	51	52	22		50				_
	Totol	solide solids in ppm					903		774		695	774				
		Other constituents							$PO_{l_{4}} = 0.0l_{4}$		$PO_{\rm ll} = 0.0$ ABS = 0.02					
		Silico (SiO ₂)					8		53		8	8				
	million	Boron (B)					0. 34	0.36	0.38	0.30	0.35	0.34				
45a)	per mil	Fiuo- ride (F)					0.5		0.50		0,46 0,02	0.5				
NCL T	5 0						0.5		4.3 0.07		1.0 0.01	0.5				
I PROVE	ports pe	Chio - ride (CI)					<u>56</u> 1.58	51 1.44	45 1.27	41 1.16	44 1.24	49 1.38				
DIATEAG	Ē	Sul - fote (SO ₄)					317		270 5.74		257	252				-
JOAUTAL RIVER 1	stituenti	Bicor - bonote (HCO ₃)					423 6.94	416 5.82	337	353 5.78	334 5.48	386 5. 32				
CERTIMUE ODWNIME DIMILIANS FRONTHEE T SANTA THET REVER NEAR SOLVANG (Station 458)	Minerol constituents	Carbon- 01e (CO ₃)					0 0,07	0*00	0.00	0*00	0.00	0.00				
SAN	Min	Potos- sium (K)					3.0 0.07		2.8 0.07		2.4 0.00	2.2				
		Sodium (No)					65 2+83	68 2.96	64 2.78	61 2.65	63 2.74	62 2.70				1
		Magha- sum (Mg)					80 6.53		67 5+51		65 5.38	87 7.16				
		Calcium (Ca)					119		A2 4.09		75	5.34				
		I					7.9	9°0	7.8	8.4	8.2	8,1				
		of 25°C)					1314	1263	1137	1113	1069	1136				
		5					26	112	110	138	lhO	127				_
		Dissolved oxygen ppm %Sot					d.11	12.0	11.8	14°0	11.6	11.2				
		Tero a ar					Q.17	22	49	59	-29	72				
		Dischorgs Temp in cfs in oF		Dry No flow	Dry No flow	Dry No flow	ه ب مد	b est.	6 est.	6 est.	7 est.	ó est.	Dry No flow	Dry No flow	Dry No flow	
		Dote ond time somplad P S T	Water Year 1362-1903	10-1-02 1505	11-14-62 0820	12-5-62 0 205	1-15-63 1000	2~5-b3 0935	3-5-63 1800	4-2-63 1030	5-0-63 1330	6-4-63 1000	7-1-03 1540	8-1-63 8900	9-3-03 1515	

TABLE D-2 Es of Surface wate

TABLE D-3 ANALYSES OF SURFACE WATER

LOS ALIGEIEUS DRATHAGE PROVINCE U MATILIJA CREEK ABOVE DAM (Station 45b)

	Anolyzed by ^C		DWR	DWR	DWR	DWR	DWR	DWR	DWR	EMG	DWR	DWR	DWR	DWR
	Hordness bid - Caitform as CoCO _S 11 Total N C n ppm		5°3	< 0.45	0.6 2.3		13 62	62 21	6.2 130	6.5 6	62 240	62 5	240 2.3	+01 70+
Tur-	- piq		< 25	52	r, 25	, 25 ,	ć, 25	ć 25	. 25	, 25	, 25	, 25	52	, 25
	N C OS		247	241	8	237	24 I	243	224	215	245	252	217	533
			448	443	465	439	441	439	413	425	# 36	452	£4	h39
d	sod -		28	26	26	22	29	53	53	54	Sh	54	53	3
Totai	solved solved in ppm									687				819
	Other constituents									$POl_{\rm L} = 0.0$ ABS = 0.02				PO4 = 0.15
	Silica (SiO ₂)									18			-	52
lion	Boron (8)		2.14	1.66	1.62	1.84	1.68	0.80	0.84	0.92	1.08	1.40	2.50	2.60
er mil	Fluo- ride (F)									1.0 0.05				1.4 0.07
ports per million equivalents per million	Ns - trate (NO.)	,								1.4				0.01
e quiv	Chia- ride (CI)		69 1.95	67 1.89	66 <u>1.86</u>	66 1.86	63 1.75	27 0.76	29 0.82	30 0+85	<u>38</u> <u>1.10</u>	48 1.35	67 <u>1.89</u>	82.40 2.40
Ē	Sul - fats (SO2)									306 6.38				286 5.96
Mineral canafituents	Bicar - bonate (HCO_)	·	245 14.02	246 <u>4.04</u>	246 4 <u>+04</u>	246 4.04	244	239 <u>3+92</u>	231 3.73	256 4.20	233	244	255 4.18	251 4.12
eral can	Carbon- ate (CO.)		0.00	0.00	0*00	0*00	0*00	0*00	0*00	0.00	0.00	0.00	0.00	0.00
Ň	Potos- sum (K)									2.5				<u>5.0</u>
	Sodium P (Na)		79 3.44	73 3+18	75 3.26	73 3.18	81 3.52	59 2+57	57 2.43	63 2.74	62 2.70	<u>67</u>	80 3.43	3.65 3.65
										31 2.56				3.49 2.49
	Catcium Magne- (Ca) sium (Ma)									<u>5.94</u>				1.20 0.29
	I		7.8 ^a	8,1ª	7.7 ⁸	8.1	6.7	B.O	8.2	8.0	3.5	7.6	8.1	7.9
pecific	conductance (micromhas at 25°C)		1128	1133	1140	1119	1150	1043	1029	1019	1022	1050	1115	1164
			16	76	11	%	78	69	8	8	8	102	102	105
	Dissolved oxygen oom 0/ Sat		8.0	10.4	7.6	8°.8	8°0	8.4	4.8	4°.9	8.6	5.¢	0.6	9.6
	de u		72	54	62	58	ch.	59	<i>b2</i>	62	70	70	72	.0 8
	Dischorge Temp		3.5	ų.0	2.5	6.3	4.5	11	13	9.3	5+4	5.8	2+5	3.1
	ond time p.S.T	Water Year 1962-1963	10-2-62 1100	11-13-62 1435	12-4-62 1520	1-15-63 1345	2+5-63 1300	3-5-63 1500	4-2-63 1500	5-7-63 0900	0-4-63 1400	7-2-63 1125	3-1-63 1400	9-4-63 1230

TABLE D-3

ANALYSES OF SURFACE WATER

LOS ANGELES DRAIMAGE FROVINCE U VENTURA RIVER NEAR VENTURA (Station 61)

	7	1								~	~	~	~	<i>cc</i>	с.	
	Anolyzed by ^C				DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	
	Mordness bid - Coliform Dos CoCO3 11 MPN/mi				5°3 0'5	6.2 6.2	6.2 6	240	240 62	240 240	130 23	700+ 700	240 62	700+	53	
-	- 20				52	(25	52	25	52	52	3	52	52	25	25	
	CO3	U E Z d			236 X	248 X	251 <	228	206	202	. L22	240 <	250 <	240	535	
		r I			483	507	519	504	446	¹⁴ 26	μTT	17 l	1489	14 A 2	508	
1	cent aod -				55	22	53	24	24	25	23	8	23	22	3	
Totot	solvas bevios solida	mqq ri									780				966	
	Other constituents	1									AS = 0.00 $PO_{II} = 0.00$ ABS = 0.00				$Po_{i_{t}} = \underbrace{0,1}{0,1}$	
	Silico	Si0 ₈ 1									16				52	
Lion	Boron	(B)			0.52	0,46	0.49	0+57	0.60	0.45	0.54	1.0	0.48	0.63	0+55	
per mi	Fluo-										0.74				0.8 0.04	
parts per million equivolents per million	- 14	(^S ON)									<u>9.0</u>				0*5	
e quivo	Chio-	(<u>C</u>)			1.35	<u>55</u> 1.55	58 1.64	60 1.69	50 1.41	52 1.47	52	52 1.47	52 1.47	4.8 1.35	62 1.75	
Ę	Sul -	(SO ₄)									276 5.81				<u>285</u>	
stituente	Bicor-	(HCO3)			307 5+04	<u>316</u> 5.18	<u>327</u> 5.36	<u>337</u> 5.52	293 4.80	273 4.48	305 <u>5+00</u>	282 4.62	292 4.78	295 4.84	<u>337</u> 5+52	
Minerol constituents	orbon -	(co ₃)			0.00	0*00	0.00	0000	0.00	0*00	0000	0*00	0*00	0*00	0.00	
Mine		E ()									1.6 0.04				7.4 0.19	
	6	(0 N)			<u>63</u> 2.74	64 2.78	70 3.04	73	64 2.78	64 2+73	65 2.83	75	66 2.87	63 2.74	70 3.05	
		(Mg)									<u>33</u> 2.71				<u>36</u> 2.97	
	Calcium	(Co)									137 6.84				<u>144</u> 7.19	
	X				7.9 ^a	7.58	7.7	7.8	7.6	9°5	J.B	t,∎	7.°4	7.9	7.ª4	
	conductance (micromhos	10-02-10			860	1173	1195	1218	1110	1077	1097	1088	1100	1098	1205	
		% Sat			97.8	110	100	Not Given	89	118	111	107	143	133	142	
	Dissolved osygen	ppm %oSat			9*6	10.8	10.8 1		0*6	11.2	111.0 111	9.6	13.2	12.6	13.0	
	de e				62	62	54	Not Given	59	65	61	02	68	68	68	
	Dischorge Temp			Dry No flow	5.6	0.5	1.1	1.5	3.2	3.4	4.4	3+5	1.4	5*0	0*5	
	Dote D. ond time	P.S.4	Water Year 1962-1903	10-2-62 N	11-13-62 1520	12-5-62 1120	1-15-63 1250	2-5-63	3-5-63	4-2-63	5-7-63 0730	6-4-63	7-2-63	8-1-63	9-4-63 1115	

TABLE D-3 ANALYSES OF SURFACE WATER

LOS ANGELES DRAINAGE PROVINCE (1

SANTA CLARA RIVER AT LOS ANGELES-VENTURA COUNTY LINE (Station 46)

	a number of	by C		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	RW0
		as CaCos ity MPN/mi A		~~~~ ~~~	6.2 1.3	0.6 2.3	6.2 9.5	240 240	62 700	230 62	46 6	24.0 700	62 6.2	13 62	13
\vdash	1 - 2			25	25	52	52	52	25	125	52	52	52	52	52
-	<u>F</u> A	N C CO		¥066	7166	¥	858	787	723	717	¥19	<u>¥</u>	¥	1138	×
	Hardes	Totol Ppm		1307	1336	165	1190	1076	1073	1066	985	1240	1260	1460	1257
	Per-	- pos		¥.3		56	07	43	775	38	×	38	⁴⁰	43	т 4
Teter	-910	solide in ppm									2081				3040
		Other constituents									$PO_{L_{1}} = \frac{0.0}{0.05}$ ABS = 0.05				P04, = 0.00
	ŀ	Silica (SiO _e)									35				2
lian milion		Boron (B)		138	1+30	1.62	1.22	1.05	1.22	0.88	0.82	1.18	1.15	2.14	T*2
million		Fiua- ride (F)									1.1				0.07
2	1	Ni- Irots (NO ₃)									1.1 0.0I				0*00
ports p		Chio- ride (Ci)		216 6.09	203 5+72	66 1.86	174 4.91	170 4.79	1.29	$\frac{131}{3.69}$	108 3+05	16*1 1/4	2.12 5.98	260	<u>5.53</u>
č		Sul - fots (SO ₄)									1040 21.67				<u>32+60</u>
stituants		Bicor- bonote (HCO3)		<u>387</u> 6.34	421 6.90	246 4 <u>04</u>	405 6.64	353	12.00	426 6.98	410 6.72	407 6.68	<u>365</u> 5.98	393 6.44	6.60 6.60
Minsrol constituents		Carbon- ate (CO ₃)		0.00	0*00	0*00	0.00	0*00	0.00	0.00	0.00	0.00	0*00	0.00	000
Min		Potas- sum (K)			_						6.9 0.18				8.0 0.20
	ŀ	Sadium (No)		454 19.75	4.84 21.05	75 3.26	371 16.14	370 16.10	353 15+36	294 12.80	254 6	355 15.44	<u>392</u> 17.05	<u>550</u> 23.93	19.23
		Magne- sum (Mg)									103 8.47				150
		Calcium (Ca)									225 11.23				257 12,82
	-	H		u 6°L	8,1 8	7.78	8.0	7.7	6.8	7.0	7.2	7.0	9*L	8.2	8°0
	photoclance	(micromhas at 25ªC)		3709	3887	1140	3297	3238	3118	2925	2595	3270	3340	1,327	3623
	rad Cu	% Sat		104	66	11	109	105	69	96	98	109	131	123	109
	Dissolv	ppm %Sat		9.2	9.6	7.6	11.2	9.6	8.0	9.4	9.6	9.8	10*2	9.6	10.0
				72	62	66	58	68	48	64	02	70		đ	68
	schargs 1	in cfs in aF		0.8	1.1	6*0	1.5	1.6	1.2	1.5	3.9	5*5	1.2	0.40	0.60
		and time sampled P.S.T	Water Year 1902-1903	10-1-62 0900	11-13-62 1100	12-4-62	1-14-63 1110	2-4-63 1210	3-4-63 1000	4-3-63 1030	5-8-63 1100	6-4-63 1745	7-2-63 1520	8-1-63 1900	9-4-63 1800

	WATED
BLE D-3	CUDEACE
TAB	L C
	040

ANALYSES OF SURFACE WATEN

LOS ANGELES DRALIAGE PEOVINCE U SANTA CLARA RIVER NEAR SANTA FAULA (Station 46a)

Per-	sed as CoCCO ₃ ity MPN/mit by C ium Tatai N C		24 DWR 6.2	23 DWR	2 DWR	DWR	DWR	DWR	DWR	DWR				
Per-			24	m m		CJ.		6.2 00+	+				23 6.2	
Per-						6.2 240	240	2	240 700+	62	240	700		70+
Per-			× 52		35	+ 25	22	219 \$ 25	3 250	5	5 , 25	91, 25	5 52	6 52
Per-		6	4 751	9 664	6 639	9 624	7 555	767 519	6 313	2 702	176	748 529	795 532	800 529
e d	100 100 100		1024	666	916	689	827		516	1002	1030			
	D + E		53	29	8	28	31	30	28	1 33	30	59	32	37
Toto	solved solids in pom									2104				1550
	Other constituents									$PO_{l_1} = 0.05$ AB3 = 0.04				PO ₄ = <u>0.00</u>
	Suico (SiOg)									33				31
lion	Boron (B)		1.02	0.94	0.79	0.91	0.99	1.06	0.78	1.14	1.01	0.81	1.25	0.92
per million	Flug- ride (F)									1.1				1.1 0.06
	Ni - trots (NO.)	,								9.8 0.16				00*0
porte p equivalents	Chio- ride (CI)		93 2.62	80 2 26	80 2,26	78 2.20	2°58 2°58	74 2.09	37 1.04	94 2.65	95 2.68	75 2.12	90 2.54	<u>2.71</u>
e -	Sul - fate (SOL)	'								1050 21.88				709 14.77
stituents	Bicar - banate (HCO.)	•	333	<u>336</u> 5.50	<u>338</u> 5.54	<u>336</u> 5.50	<u>332</u> 5.44	303 14.96	248 4.06	366 5.00	<u>310</u> 5.08	267 4 • 38	321	331 5.42
Mineral constituents	Carbon- ate (CO.)		0*00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0*00	0*00	00.00
Ŵ	Patos- tum (K)				· · ·					7.4 0.19				
	Sodium (Na)		194 8.44	1744 7.57	150 6.52	163 7.09	<u>169</u> 7.35	150 6.53	92 4.00	233 7 10.14 0	201 <u>8.74</u>	141 5.13	170 7.40	7.35
	Magne- sium (Ma)			P I II	1140					100 8.26				6. 52 6. 52
	8. (j)									236 10 11.78 8.				
	(Calcium)		8.1 ^ª	7.8ª	7.98	2	0				60	6°L	8.2	7.9
f.c	mhas PH 5°C)					6 7.7	5 8.0	6 7.8	6 7.8	3 7.8	30 7.8			
	(micramhas at 25°C)		2381	2237	2159	2126	2105	1956	1306	2513	2430	1750	1970	1973
	1 v 8 d 9 en 0/. Sn1		106	10t	118	91	101	ಹೆ	85	37	101	108	100	106
			9.6	10.0	10.8	9*6	9.2	0*6	9.8	9.2	9.6	4*6	9.2	4.¢
	a Temp		70	64	68	56	67	55	49	09	68	74	74	12
	Dischorge Temp in cfs in of		20 est.	30 est.	30 est.	30 est.	35 est.	30 est.	30 est.	35 est.	35 est.	30 est.	l0 est.	est.
O a te C	e 10	Water Year 1962-1963	10-1-62 1205	11-13-62 1310	12-4-62 1330	1-14-63 1425	2-4-03 1415	3-4-63 1420	4-3-63 0725	5-7-63 1600	6-4-63 1600	7-2-63 1300	8-1-63 1600	1500

TABLE D-3 ANALYSES OF SURFACE WATER

LOS ANGELES DRAITUGE PROVINCE U PIRU CREEK NEAR PIRU (Station 46c)

	Analyzed by ^C			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
	hid - Caliform			6.2 24	13 23	13		23	23	62 62	69 69 69	240	62 240	240	24 70+
Tur -	- piq -			< 25	×25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	< 25	25
	Hardness as CaCOs	ppm ppm ppm		278	312	370	358	305	320	229	251	4 36	393	358	335
		ppm bpm	_	462	535	596	594	209	281	403	443	662	610	500	579
4	sod -			52	59	52	21	59	32	5h	58	59	32	8	33
Total	solved solved										800				1194
	Othar constituents										$PO_{44} = 0.0$ ABS = 0.02				
	Silic d	2									15				55
milion	Boron (B)			0.81	0.90	0.91	0.92	1.02	1.28	0.80	1.00	1+22	1.15	1.54	1.30
per m	Fluo- ride	Ê									$\frac{1.1}{0.06}$				1.3 0.07
121	Ni - trots	(NO3)									1.0				0,00
ports pr equivalents	Chio - ride	(C)		23 0.65	25	31 0.87	34 0.96	31 0+87	34 0.96	19 0.54	23 0+65	38 1.07	36 1.02	41 1.16	<u>35</u> 0.99
Ē	Sul - fate	-+									388 <u>3.09</u>				558 11.62
tituents	Bicar - bonate	(HCO ₃)		224 3.68	272 4.46	276 4.52	259 4.24	249 4.08	318 5.22	212 3.48	234	276 4.52	265	173 2.84	298 4, 338
Mineral constituents	C arbon -			0.00	0*00	0,00	14 0.48	0.00	0.00	0,00	0,000	0,00	0.00	0.00	000
Mine	Potes- C	ŝ		010	0,0						5.3 0.14			<u> </u>	6.8 0.17
	Sodium			<u>72</u> 3.13	174 7.57	100 4.35	102 4.44	96 1.18	<u>125</u>	59 2+57	79 3.44	<u>123</u> 5.35	<u>134</u> 5.83	141 6.13	<u>134</u> 5*83
	-audo M	(Mg)									42 3.47				60 1.94
	Celcium (Ca)								_		108 5.39				133 6.64
	H			8 €.7	8.0 ⁸	8,0 ⁸	8. 3 a	8.2	8.2	8.2	8.4	8.0	7.9	8.4	00°.
a serie	conductance (micramhos			1107	1306	1455	1417	1324	1555	<i>L66</i>	1129	1606	1509	1461	1533
		%o Sot		100	103	105	106	108	22	98	100	III	115	120	107
	Dissolved	e dd		9.5	10.4	10.8	12.0	10.8	9.0	10.4	9.8	10.2	9.0	8.6	о б
-				68	60	58	20	Ó1	87	55	62	68	ਲੈ	86	04
	Dischorge Temp in cfs in of			15 est.	15 est.	15 est.	12 est.	15 est.	15 est.	35 est.	10 est.	5 est.	10 est.	est.	LO est.
	Date and time eampled	P.S.T.	Water Year 1962-1963	10-1-62 0935	11-13-62	12-4-62	1-14-63	2-4-63 1255	3-4-63	4 - 3-63 0930	5-7-63 1800	0-4-63 1715	7-2-63 1450	8-1-63 1830	9-4-03

	-
D-3	
BLΕ	i
TAE	1
	1

ANALYSES OF SURFACE WATER LOS AUDULAS LEGILIAS - CATES

SESPE CREEK NEAR FILLMORE (Station 46d)

	Hordnass Tur- os CoCOs Ity MPN/mi by C Total N C Ppm		5 46 DWR 0.45			2.3 DWR	6.2 DWF 23			2.3 DWR 1.3	700 DWR 700	52 DWR 700		
-	CO3 Pid	:	300 25	320 25	331 1.25	335 <25	299 (25	247 25	244 25	193 90	247 25	523 25	100 25	153 25
	Hordness os CaCO ₃ Total N C		490	462	TH1	605	471	422	1,18	335	7100	694	312	290
	sod -		R	ŝ	33	34	33	33	58	32	Ξ	21	45	747
Totol	dis- solved solids in ppm									020				Iba
	Other constituente									$PO_{\rm h} = 0.0$ AB3 = 0.03				P04 = 0.0
	n Silico (SiOg)									12				5
hion million	Boron (B)		1.74	1.75	1,82	2.30	1.92	1.90	0*00	1.02	1.13	1.15	2.36	2+20
per n	FIC FIC									1.1				$\frac{1,4}{0,07}$
ports per militon equivolents per mil	N 1rofe (NO ₃)									1.4 0.02				0.00
equit	Chio - ride (Ci)		75	90 2.54	<u>97</u> 2.74	<u>96</u> 2.71	<u>69</u> <u>1+95</u>	58 1.64	37 1.04	<u>35</u> 0+99	50 1.41	60 1.69	<u>83</u> 2.34	100 2+32
c.	Sul - fore (SO4)									290 5.04				<u>245</u> 5.11
stifuent	Bicor - bonote (HCO ₃)		<u>159</u> 2.60	<u>173</u> 2.34	183 <u>3.00</u>	212 3.48	210 <u>3.44</u>	214 3.50	212 <u>3.48</u>	173 2.84	187 3.06	209 3.42	<u>178</u> 2.92	155 2+54
Minerol constituents	Corbon- 01e (CO3)		0.00	0.0	0.0	0.00	0.00	0000	0*00	0,00	0*00	0000	0.00	0*00
Mine	Potos- (K)									2.6 0.05				3.4 0.09
	Sodium (No)		1.52	105	109 4.74	<u>120</u> 5.22	109 4.74	97 4.22	73 3.18	73	3+ 65	118 5+13	120 5+22	118 5.13
	Mogne- sium (Mg)									<u>31</u> 2.56				22 1.č1
	Colcium (Co)									83 4.14				3.79
			े. 2 ⁸	8.1 ⁸	7.9 a	8, 2 ⁸	6.7	0.2	0° 0	0.0	0°*0	7.8	8.5	4°.C
Spacific	conductance pH (micromhos pH		1323	1307	1336	1412	1336	1202	1099	926	1072	1543	1034	1052
	aen (n 90 Sot		154	146	159	123	106	85	96	119	112	161	120	119
	Dissoivs d oxygen ppm 0/0 Sof		13.6 154	14.4 146	15.6 159	14	10.6	9.4	11.2	11.6	1.0	13.0	10.0	10.4
,	dig E C		72	09	5	2	3	52	Q	CJ Q	N D	R	49	73
	Dischorge Temp in cfs in 0F		2.0	0.3	0. 2	1.3	11	18	07	14	3.2	5.0	0.4	0.4
	eond time sompled P S.T	Water Year 1900-1303	10-1-02 1045	11-13-62 1220	12-4-62 1220	1-14-63 1320	2-4-53 1330	3-4-03 1202	4-3-03 0325	5-7-03 1700	0-4-03 1645	7-2-03 1345	3-1-63 1900	9-4-23 1000

	WATER
LE 0-3	SURFACE
TABLE	P
	ANALYSES

LOS ANGELES DRAFFIAGE PROVINCE

_
46e
(Station
PAULA
SANTA
NEAR
CREEK
PAULA
SANTA

	Analysek by C			DWR	DWR	DWR	DWR	DWR	BC	DWR	DWR	DWR	DWH	DWR	DWR
-	bid - Colifarm ^D ity MPN/mi			0.6 2.3	2*3 1*3	< 0.45	0.0 0.0	6.2	240 700	62 23	4.5- 4.5-	13 6.2	1.3	240 2	70+ 70+
Tur-	- piq Ali			25	<25	52	<u>\</u> 25	< 25	< 25	52	52	< 25	< 25	757	55
	Hardness as CoCO ₃	D D D D D D D D D D D D D D D D D D D		155	155	166	165	173	160	127	115	145	141	136	151
		Totol PPm		341	377	392	1405	388	376	326	275	318	332	300	4 24
Par	cent sad -	-		38	36	34	34	37	317	53	30	31	35	39	07
Total	solids	n pp									506	583	644		893
	Other constituents										$PO_{l_{1}} = 0.0$ AB3 = 0.03				Po4 = <u>0.0</u>
	Silica	(30ic)									11	13	17	16	8
lion	Boron	(A)		0.48	0,46	0.41	0.42	0.53	0.45	0.22	0.27	0.33	0.41	0.58	19*0
millior Sar mi	Fluo-										0.62 0.03	0.62 0.03	0.65	0.76	0.7
equivalents par million	Ni -	-									1.8 0.03	1.2 0.02	c.4 0.00	0.00	10 00 10
equivo	Chio- ride	(CI)		59 1.66	<u>63</u> 1.78	61 1.72	60 1.69	73 2+06	54 1.52	<u>35</u> 0.99	27 0.70	43 1.21	51 1.44	53 1.49	2.71
ē	Sul -	(*0s)									194 14.05	217 4.53	223 4.65	237 4.93	5.77
stituents	Bicar -	(HCO3)		<u>227</u> <u>3.72</u>	271 4,44	276 4+52	293 4,30	262 4.30	264 4.32	243 3.98	3.20	211 <u>3,46</u>	233 3+32	200 3.2H	<u>329</u> 5,40
Mineral constituents	Carbon-	T		0.00	0.00	0.00	00*0	0.00	0.00	0.00	0,00	0.00	0.00	0*00	00*0
ů.	Petas-	(¥)									<u>1.4</u> 0.03	1.9 0.05	2.3 0.05	2.0	5.0 0.13
	Sodium			95 4.13	99 14 • 31	93 4.05	94 1.09	107 4.65	<u>3, 92</u>	62 2.70	<u>55</u> 2.39	67 2.91	<u>84</u> <u>3.05</u>	90 <u>3.92</u>	131 5.70
	Magne-	(M)									32 2.61	35 2.87	36 2+95	<u>33</u> 2.71	2: <u>39</u>
	Colcium	(10)									58 2.89	70	74 3.69	66 3.29	110 5+43
	H			8.1 ⁸	7.7 ^a	7.3 ^a	8.1	8.2	8.2	8.0	8.0	θ, 4	7.8	θ . 5	17 0
Spacific	conductance (micromhas			1039	0111	1140	1128	1208	1078	911	766	858	946	626	1305
		% Sof		142	118	110	96	114	104	100	ToT	115	158	134	130
	Dissolved daygen	ppm %Sof		12.8	11.6	10.8	11.2	10.8	10.4	11.6	11.4	11.0	13.6	11.4	8 1
				72 1	62 1	62	18	65 1	60 1	43	55 1	64]	74 1	76 1	69
	Dischorge Tamp in cfs in oF			1.9	1.9	3.6	3.6	4.4	4.4	127	6	0° °	3*0	2.4	0.5
	and time sampled	PST	Water Year 1962-1963	10-1-62 1235	11-13-62 1340	12-4-62 1430	1-14-63 1515	2-4-63 1600	3-4-63 1625	4+3-63 15 1550	5-7-63 1040	6-4-63 1530	7-2-63 1230	8-1-63 1700	9-4-63 1430

ANALYSES OF SURFACE WATER TABLE D-3

LOS ANGELES DRALIAGE PROVINGL U LOS ANGELES RIVER AT FIGUEROA STREET (Station ${\rm kT})$

	Anolyzed by ^C			QMM	CPW	LADPH	LADPH	BAUWT	LADPH	DWR	HADAI	LADPH	ГАДРН	DWR
-	Hardness bid - Coliform ^D ac CaCO _S ity MPN/mi			980	0.04 64		°. ℃	0 _1	11000+	620 620	с. С.	¹⁴ 30	Hfgh 11000+	500 7000
- In	n ppm	1					25	, 25		25			High	, 25
	000°	Edd								109				101
	L .	Edd		1,00	350					331				210
Per	sod -									11				41
Totol	solved solids			1977	1.820	1870	1870	1609	IthI	1 ⁴ 37	1687	2745	1787	522
	Other constituents					$cr^{+6} = 0.0$		5-day BOD = 5.28 011 & grease = 138	Cr ^{+D} = 0.00 5-day BOD = 9.20 0il & grease = 23	$A3 = \frac{1.5}{0.24}$ PO ₄ = $\frac{0.24}{0.30}$	011 & grease = $\frac{14}{3.12}$ 5-day BOD = $\frac{3.12}{3.12}$	Phenols = 0.0 Hex. $Cr^{+6} = \overline{0.0}$ Oil & grease = 186 5-day BOD = 4.64	Hex. $Cr^{+b} = Trace$ Phenols = 0.02 5-day BOD = $\frac{10}{10}$ 011 & grease = $\frac{116}{10}$	AS = 0.02 ABS = 0.76 POL ₁ = 1.0
	Silica (SiO _s)									17				51
Lon	Baran (B)			5*0	1.2			1.4	0*5	1.8	1.1	1.9	T*0	0.40
million er mi	F luo-									1.04 0.05				0*9 0*05
parts per million equivalents per million	Ni - trote			7	01	0*00	5 0.08	2+0 0+03	0*00	1.6 0.02	<u>3</u> 0.05	1.0 0.01	<u>3.0</u> 0.05	13 0.22
e quive	Chio- ride	Ĵ		640	670	630 17.90	550 15.63	490 13.92	390 11.90	360 10.15	480 13.12	530 15+06	460 13.08	42 1.18
Ē	Sul - fote	(so4)		f21.4	518.5	518 10.80	415.6 8.64	436.2 9.08		4,22 8,80	518.5 10.80	448.6 9.39	469.1 <u>9.80</u>	<u>140</u> 2+91
stituents	Bicor - bonate	(HCO ₃)		540	350	375	410 6.73	225 3.68	230	241 3.96	165 2.71	250 4.10	320	171 2.80
Mineral constituents	Carbon -			01	07	0.00	<u>35</u> 1.17	<u>75</u> <u>3.99</u>	<u>100</u> <u>3+33</u>	14 0.48	140 1.80	80 2.66	20 0.66	0.00
Min	Potos-	ŝ								6.4 0.16				9.4 0.24
	Sodium P	\rightarrow		446.2	598	445 19•35	538.2 23.40	460 20.10	947.6 41.25	391 17.00	496.8 21.30	4,83 21.00	391 17.00	3.05
	Magne-			87	<u>6</u>	90 7.39		92.5	53.5 4.39	45 3.68	84 6.90	58.5 4.81	<u>86.5</u> 7.10	151
	Calcium (Ca)			112	112	114 5.69	110 5.49	84 4.19	78 <u>3+89</u>	59 2.94	78 3.83	82 1.09	116 5+79	60 2.99
	Ĩ			8.2	8.1	8,1	8.4	0.10	B.4	Cl * C	3.3	°,1	7.6	o n
	conductance (micramhos									2341				711
	1	ppm %Sat		68.5	40	11	45	211	185	131	157	162	37	135
	Dissolved axygen	Edd		6.50	6.64	7.5	h.,56	11.12	18.0	12.2	14.24 157	13.12 162	17	10.3
	d e e			64	57	63	09	65 1	63]	10	69	8	11	81
	Dischorge Temp			0*1	0.03	+ Flow	Trace	+ Flow	0.10	0.10	0.10	0,10	+ Flow	8.7
	Date and time sompled	P S.T.	Water Year 1962-1963	11-7-62 1100	12-5-62 1030	1-9-63 1200	2-5-63 1000	3-6-63 1045	4-3-63	5-8-63 1815	6-5-03 1040	7-3-63 1130	8-7-63 1020	9-5-63 1345

TABLE D-3 ANALYSES OF SURFACE WATER

I.OS ANGELES DRALINGE PROVINCE U LOS ANGELES RIVER AT PACIFIC COAST HIGHWAY (Station $4\theta)$

		Andiyzed by C		DWR	LBDPH	Hduri	Hduri	Hader	HACEL	Haden	DWR	Hadei	Haderi	Hdusi
		Hordnass bid - Coliform ^D os CoCO ₃ ity MPN/mi Tatol N C		62 240	>700000	700000	24.00	6200	24	200	230 60	24,000	2° 1	55
	Tur-	- pid -		25			*	*		*	100	:	*	*
		Hordness os CoCOs Tatol N C		602				0			820			
				1056				250			1204	316		
	Par.	tent nod		95							88			
	Totol	solved solved in ppm		9800	9550	9750	16140	15730	ส	6777	12792	10950	13500	15976
		Other constituente		$PO_{l_{1}} = \frac{5.6}{213} AS = \frac{3.5}{2.1}$ NH _{l_{1} = $\frac{213}{213} ABS = \frac{2.1}{2.1}$			Cr ⁺⁶ = 0.0 011 & grease = 62	$Cr^{+6} = 0.29$ 011 & grease = $\frac{1}{15}$	$Cr^{+6} = 0.0$	5-day BOD = 99.0 011 & grease = $\frac{38.0}{38.0}$ Alkalinity = 160.0 $cr^{40} = 0.01$	$NH_4 = \frac{27}{1.52}$	$Cr^{+6} = 0.0$ 011 & grease = 19	Phenols = 0.15 Cr ⁺⁶ = 0.0 011 & grease = 228 5-day BOD = 142.0 Alkalinity = 333.0	$\begin{array}{l} 5\text{-day BOD} = \frac{212}{\text{Cr}^{46}} \\ \text{Cr}^{46} = \frac{0.0}{2} \\ \text{Phenols} = \frac{0.3}{20.3} \\ \text{Alkalinity} = \frac{393}{393} \end{array}$
		Silica (SiO _E)		59							50			
	lion	Boron (B)		10							13.0			
milio	E	Fluo- ride (F)		0.82							$\frac{1.15}{0.06}$			
ports per million	equivalents per million	Ni - trote (NO.)		3.0 0.05	01	0.2	0.2 0.003	1.9 0.03	0.00	0.00	<u>18</u> 0.29	1.15 0.02	0.00	90°0
	equiv	Chio- ride (CI)		5175 5175	5300	1020	8180 23.05	7610	10610 299.20	3209 <u>90, 60</u>	<u>7075</u> 1 <u>99.5</u>	5810 163.90	7235 21.80	8220 29.30
	Sul -			202 14.20	111	⁴⁴⁶	904 <u>18.70</u>	912 18.95		230.5	120 2.51	207 4+32	301 7+52	196 4.06
to a literation		Bicor- banate (HCO ₄)		554 <u>9₊08</u>	3.08	284	240 <u>3.94</u>	250 4.10	359 5.88	241 3+95	468 7.68	<u>316</u> 5.18	333 5.46	393 6.44
Minerol constituents		Corbon - 010 (CO.)		0.00	0.00	0.00	0.00	0.00	0.00	0*00	0 0*00	0.00	0.00	0.00
, i		Potos- s:um (K)		39 1.00							39 1.00			
		Sodium (No)		3150 137.03	3000	3000	4800 208.5	4,700 204.5	000 287.0	2150 93.6	4.340 188.7	3500 152.3	3500 152.3	4950 215.7
		Magne- sum (pM)		01.10 9.70	152	183	340	522 42.90	415 34.05	75 6.17	131	230	375 30.81	15.61
		Calcium (Ca)		230 11.48	216	505	275	272 13.67	380 <u>18.95</u>	183 <u>9.14</u>	267 13,30	273 13.62	<u>275</u> 13.72	<u>337</u> 16.80
		Ĩ		7.8 ^a	7.3 ^b	7.6b	7.6	7.7	8.1	4.9	8.4	7.6	7.6	7.5
	Specific	(micramhos F at 25°C)		14993							20370			
				12	able		0	6.2	20	17	TO3	T 7	0	0
		Dissolved oxygen ppm %Sq		1.2	Not availa		0	0.6	1.9	1.6	9.0	η*0	0	0
		Ê.		14	68	61	64	ú3	66	66	78	75	- 23	42
		Discharge Temp in cfs in of		15.4	14.6	13.8	13	12.1	11.1	16.2	11.5	10	14.6	19.4
		and time sampled	Water Year 1962-1963	0750 0750	11-7-62	12+5-62 1030	1-9-63 1100	2-6-63 1000	3-6-63	4-3-63 1030	5-8-63 1345	6-5-63 1000	7-10-63 1050	8-7-63 1010

ſ		2	
		Anoly by C	ж. А
		Hardness bid - Caliform ^b Analyzed os CaCO ₃ 11y MPN/mi by ^G Totol N C Ppm ppm	7000
	Tur-	- pid In ppm	3
		Hardnese os CaCO ₃ Totoi N C PPm PPm	O F F O
		Haro 08 C Totol PPm	8 6
	2	and - Fundament	8
	Total	dis- saived sod - solids rum	7066
		Other constituente	$cr^{+6} = 0.0$ $Pol_{1} = 2.7$ Ans = 0.1.7 Ans = 2.7.7 Ans = 2.7.7 Ans = 1.1.7(Ly = 49) Phenola = 0.15 Phenola = 0.15
		ilic a Si O ₂)	82
1 43)	uo	B) ((<u>10.8</u>
Station	ar million	Flua- ride (B) (SiO2) (F)	0.07
GHWAY (volents per million	Ni - trate (NO ₃)	1.23 L
LOS ANGELES RIVER AT PACIFIC COAST HIGHWAY (Station 43) (continued)	equivalents per million	Chta- ride (CI)	139-5
ACIFIC 0		Sul - fate (SO ₄)	58 1.73
TER AT P	stituenti	Bicar - banate (HCO ₃)	6.72 5.72
ELES RIV	Mineral constituents in	Carbon - Bicar- ote banate (CO ₃)- (HCO ₃)	00 00
LOS ANG	Min	Polas- sium (K)	25. 0.90
		Sodium (No)	123.15
		Magne- sum (Mg)	3-36 3-36
		Calcium (Ca)	200 10.23
		I	6.7
	Scarific	conductance pH (micramhos pH at 25°C)	15030
		ved en %Sat	ि स्
		Dissofved osygen ppm 9/0Saf	м. т
		Temp n of	3
		Discharge Temp in cfs in aF	Ω.
		Date and time PST	Water Year (-02-19-3 (-0-1-19-3

TABLE D-3 ANALYSES OF SURFACE WATER Los Angulos prantical in 1914

	WATER
FABLE D-3	OF SURFACE
L	ANALYSES 0

RIO HONDO AT WHITTIER NARROWS (Station 49)

	Anolyzed			DWR	DWR	DWR	DWR	DWR	DwR	DWR	DWR	DWR	DWR	DWR	DWR
	Hordness bid-Caliform ^b / as CaCO ₅ habm MPN/mi			240 240	23	6.2 13.0	240 21	700 700	50 62	700	6.2 21	700+	700+ 62	240 130	700+
	14 - Co	-		55		52	52	52	52	52	25	52	52	52	52
-	: : : : : : : : :	U ₽ ₽		555	116	222	143	121	130	503	8	135	82	159	143
	Hordn os Co	Tatol		341	315	356	286	334	276	333	284	369	252	361	295
	tent -			39	35	38	51	2 †	51	ţt 3	37	38	38	36	т 1
Totol	cis- solved solids	E d d u									560				102
	Other constituted				(All natural flow)						AS = 0.00 $PO_{44} = 0.26$ ABS = 0.15				PO ₄ = <u>1, 4</u>
	Silico	(30ic)									5				ЕI
ultion	Boron	ĝ		0.13	0.22	0.13	0.14	0.27	0.17	0.11	0.26	0.39	0.19	0.40	0.40
milio Per mi	Fluo-	(F)									1.30				0.09
ports per million equivolants per million	- IN - 104	(NO3)									1.5 0.02				24 0.38
d vive	Chio-	(ci)		94 2.05	66 1.86	96 2.71	99 2.79	91 2+57	97 2.74	95 2.68	68 1.92	89 2.51	64 1.80	98 2.76	88 2.43
¢.	Sul -			301 6.27		302 5.29	298 6.20	225 4.60	287	308 5.41	<u>161</u> <u>3.35</u>	221 4.60	88 <u>1.33</u>	250	219 4.54
stituent	Bicar -	(HCO ₃)		145	243 3.98	163 2.68	174	262	178 2.92	159	<u>239</u> 3.92	285 4.68	207	246 1.04	<u>185</u> 3.04
Minerol constituents	Corbon-	(CO3)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0*00	00.00
Min		(x)									7.4				9.6 0.25
	Sodium			100 4.35	77 3.35	102 4.44	<u>136</u>	113	133 5.79	114 4.96	3.48	104 4.52	71 3.09	35 4.13	106 4.61
	-angew Auto	(6M)									21 1.73				20 1.61
	Calcium	10-11	-								<u>79</u> <u>3.94</u>				14-20 14-20
	H	T		7.9 ⁸	7.6 ⁸	7.9 ⁸	7.7	±.4	8.0	8°5	8°0	7.8	٥.7	ч Ф	а. 5
Specific	conductance (micramhos			1125	952	1178	1190	1144	1711	1158	887	1128	786	1152	1030
		% Sof		16	61.1J	98	8	71	62	101	96	102	110	118	102
	Dissolved oxygen	ppm %oSof		9.	6.0	9.6	10.0	6.4	6.4	10.8 1	0*6	9.4 1	10.0	9.0	8.6
				78	62	62	52 1	69	58	60	30	60 9	74	8	
	Dischorge Tamp in cfs in oF			150	3.4	38.6	15	œ	17.8	17.0	0*1	h.	2.5	J.Ó	14.0
	ond time compled	P S.T.	Water Year 1962-1903	10-3-62 1110	11-3-62 0850	12-4-62 0910	1-16-63 0920	2-7-63 1450	3-7-63 1200	4-4-63 0950	5-9-63 0830	6-5-63 0830	7-2-03 1730	3-2-63 1400	0002 5000

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D-3	10.10.10
βĽΕ	0
TABL	l
	(

ANALYSES OF SURFACE WATER LOS ALIGERIES DRATHAGE INOVIDIOL U

RIO HONDO ABOVE SPREADING GROUND3 (Station 49b)

		Anolyzed by C		DWR	DWR	DWR	DWR	21-21-21-21-21-21-21-21-21-21-21-21-21-2
	9	Hardness bid - Coliform as CoCO ₃ 117 MPN/ml Totol N C Ppm ppm		240 240	62 240	6°5	.45 .45	700+
	Tur-	- 1 h h h h h h h h h h h h h h h h h h h		25	52	52	25	5
		N COS		0	9	28	41	m
	-	Totol PPm		205	216	226	197	193
	Per-	- pos		54	55	52	22	52
	Torol	solved solids in ppm		585	637	61.1	650	573
		Other constituents	the program on July 1, 1963	$AS = 0.00; PO_{4} = 14$ ABS = 1.64				жн _⊥ = <u>0.7</u> ; Ро = <u>22</u>
		(SiO ₂)	progr	8	11	58	51	[2]
u C	villion	Boron (B)	a the	0.56	0.58	0.58	5 0+74	5-r-2
aillie	per million	Fluo- ride (F)	d into	1.12 0.06	1.7 0.09	2.8 0.15	1.8 0.09	0.05
	equivalents	Ni - trote (NO ₃)	y entered into	1.5 0.02	2.6 0.04	17 0.27	25 0.40	23 0.37
	aquiv	Chio- ride (CI)	station was officially	97 2.74	106 2.99	96 2.71	111 3.13	59- 76- 26-
		Sul - fote (SO4)	was of	123	141 2.94	119	133 2.77	
	1901190	Bicor - bonote (HCO ₃)	station	266	256 4.20	242	190 3.12	232 3.30
Manual Annual Press		Corbon - 016 {CO ₃ }	This	0*00	0.00	0.00	0 0.00	8.
		Potos- sium (K)		15 0.38	14 0.36	7.3	$\frac{1^{l_{1}}}{0,36}$	13 0.33
		Sodium (No)		120	<u>122</u> 5.31	<u>116</u>	$\frac{133}{5.79}$	106 4.51
		Mogne- sum (Mg)		20 1.64	24 1.97	$\frac{23}{1.93}$	20 <u>1.59</u>	17 1.41
		Colcium (Ca)		50 2+50	47 2.35	52 2.59	47 2.35	2.4.5 2.45
		I		6*2	9.2	8.2	7.5	3 80
	Specific	(micromhos o1 25°C)		<i>L</i> 66	1047	1001	1038	818
-		gen (i %Sof		94	91	107	100	ő
		Dissolved osygen ppm %Sof		8.0	0 .2	0.6	7.8	0.0
-	_	de Eo 5		92	70	77	83	35
		Discharge Temp in cfs in oF		14.3	11 est.	100 est.	20 est.	-1 +2 0 0
		P S.T	Water Year 1902-1963	5-9-63 0900	6-5-63 0900	7~2-63 2000	8-2-63 1300	2-5-63 2030

	1
	1
	1
D-3	
0	ł
Ч	į
8	
TABL	1
-	1
	1
	1
	1

ANALYSES OF SURFACE WATER Los Attenta, succession attention

MISSION CREEK AT WHITTIER NARROWS (Station 49a)

	Anbigaet by C			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR				
	Hardness bid - Colifarm ^B A as CaCO _S Ity MPN/mi			62 4.6	240	23 23	23	62 240	62 62	700+ 130	6.2 21	500 50				
	- 20			< 32 <	5	< 25	56 >	<25	< 25	< 25	~ 25	25				
	*0°	U E Z A		- ⁴	73	92	93	ţ9	78	88	88	82				
	Hord 05 Co	Ppm ppm		191	249	575	282	249	5/1	279	284	256				
Past 1	- pos			15	16	12	12	14	14	15	37	14				
Totol	eolved solids										560					
	Other constituente	1									AS = 0.00 $PO_{11} = 0.26$	CT*0 = car				
	Boron Silico	il north									53					
llion	Boron			0*0	0.09	0.05	0.04	0.07	0.07	0.04	0.26	0.07				
per million	Fluo-	(F)									$\frac{1.30}{0.07}$					
	Ni -										1.5 0.02					
equivalents	Chio-			10 0.28	10 0.23	13 0.37	<u>15</u> 0.422	<u>13</u> 0.37	15 0.42	16 0.45	63 1.92	15 0.42				
Ē	Sul - fote	-+-									161 <u>3+36</u>					
Mineral constituents	Bicor - banate	(HCO ₃)		<u>177</u> 2.90	215	232 <u>3.80</u>	231 <u>3+78</u>	229 <u>3.76</u>	235 <u>3+86</u>	233 <u>3.82</u>	<u>239</u> <u>3+92</u>	212 3.48				
ral can	Potas- Carbon-	(co3)		0.00	0*00	0*00	0.00	0.00	0.00	0*00	0*00	0.00				
Mine	otas- C	ŝ									7.4 0.19					
	Sodium			16 0.70	16 0.70	17 0.74	18	18 0.73	20 0.87	23	80 3.48 0	20 0.87				
	Magne- S	(Mg)		-10	- 10	-10	-10	~10	010		21					
	Calcium										79 3.94					
				7.3 ⁸	7.58	7.5ª	7.7	7.8	8.1	7.8	8.0	6.7		_		
Specific	(micramhos PH at 25°C)			45.4	542	592	592	573	616	645	887	554				
		%Sat		76	100	77	75	97	67	%	8	105				
	Dissolved osygen	ppm %Sat		6.8	9.8	9°9	9.6	9.2	0*L	9*6	0.6	9.8				
				70	62	56	20	65	58	60	64	66				
	Dischorge Temp in cfs in ^{oF}			1.1	1.6	5*0	1.6	1.7	1.6	1.8	1.0	0.17	Dry No flow	Dry No flov	Damp No flow	
	ond time eampted	P.S.T	Water Year 1302-1963	10-3-62 1045	11-13-62 3825	12-4-62 0845	1-16-63 0940	2-7-63 1515	3-7-63 1120	4-4-63 0915	5-9-63 1015	6-5-63 0930	7-2-63 2030	3-2-63 1220	9-5-63 1945	

TABLE D-3

ANALYSES OF SURFACE WATER

LOS MICELES DIVIDIAGE PROVENCE -

SAN GABRIEL AT AZUSA POWER ROUSE (Station wod)

	Anolyzed by ^C			DWR	DWR	DWR	DWR	DWR		DWR	DWR	DWR	DWR	DWR	DWR
4	N/mi			0.45 0.6	0.6 0.6	0.6 0.6	0.46 0.6	0.45- 0.6		240 23	240 13	6.2 6.2	- ⁴¹ 5-	240 50	* t t . • t .
1	Hordness bid - Caliform as CaCO ₃ 11y MPN/mi	-		< 25	55	< 25	<25	<25		25	55	25	55	52	52
	80 S	mdd		12	~	~	5 2	<u>∨</u>		⊻ ∘	15 <		17	6	√ ∞
	Hardne oe CoC	Edd		187	520	220	218	500		175	189	194	195	186	194
	Per-			13	12	11	12	13		15	12	14	13	15	7
Totol	Totol dis- solved solids in ppm				220	220					530				263
	Other constituents										$PO_{4} = 0.04$ ABS = 0.02				PO ₁ , = 0.0
	Silica (SiOa)	4									14				16
lion	Boron (B)			0.10	0.10	0.08	0.10	0.09		10.07	0.10	0*00	0,10	0.12	0.09
milion per milion	Fluo-										0.50				0.6
	Ni -	(NO3)									$\frac{1.5}{0.02}$				0.5
parts per equivalents	Chio- ride			5	4 0.11	3 0.08	6 0.17	5 0.14		5	6 0.17	6 0.17	5 0 <u>,14</u>	1 1 1 1 1 1	<u>3</u>
Ē	Sul - fote	-+									<u>33</u> 0.69				28 0+58
fituents	Bicor- bonate			214 <u>3.50</u>	262 4.30	260 4,26	250 4.10	248 14.06		206 3.38	212 3+48	217	217 3+56	216 <u>3.54</u>	<u>3.72</u>
Mineral constituents in	Corbon -	(C03)		0.00	0.00	0*00	0.00	0.00		0.00	0*00	0.00	0,00	0,00	0.00
Mine	Polas- C	<u>S</u>									3.8 0.10				1, 0 0.10
	Sodium			13 0+57	12 0.52	<u>12</u> 0.52	14 0.61	14 0.61		14 0.61	12 0.52	14 0.61	<u>13</u> 0.57	15 0.65	<u>15</u> 0.65
	Mogne-	(Mg)									12 0.99				1.34
	Calcium	100									56 2.79				51 2.54
-	I			7.7 ^a	3.0 ⁸	7,98	7.6	8.0		8.0	8.0	7.8	8.0	8,2	8.2
and of the	Specific conductance (micramhas at 25°C)			4.02	463	462	161	Luu		403	10 ¹	412	406	394	411 1
	Dissolved Co osygen (m ppm 9/6 Sat			Ŷ	- 5 •66	66	108	101		100	105	123	118	6	104
				8°.8	10.0	10.4	15	10.4		11.0	11.2	10.8	11.2	8.0	2.6
				68	60	56	52	58		56	56	64	65	72	72
	Dischorge Temp in cfs in aF			82	80 est.	80 est.	80 est.	est.	Dry No flow	80 est.	80 est.	37 est.	37 est.	37 est,	37 est.
		P S.T.	Water Year 1962-1903	10-3-62 0920	11-14-62 1400	12-3-62 0825	1-9-63 1530	2-6-63 1540	3-7-63 1320	4-4-63 1150	5-9-63 1300	6-5-63 1130	7-2-63 2130	8-2-63 1030	9-6-63

	WATS
D-3	CUDEACE
TABLE	10 10
	VCEC

ANALYSES OF SURFACE WATER LOS ANGELES DEVINATE PROVINCE

SAN GABRIEL RIVER AT WHITTIER NARROWS (Station 50)

					~	~		~		<i>~</i>							
	Anolyzed			DWR	DWR	DWR		- DWR		DWR						 	
	Hardness bid - Califormb as CaCO, ity MPN/mi			62 50	62 50	62 2.0		0.6		7000 62							
	ty-	u trộm		< 25	< 25	1 52		< 25		< 25							
	aco.	U E		226	526	228		0		205						 	
				343	348	353		500		333						 	
	Cent cent sod -	Ē			38	36		13		57							
Table	Tatal dis- solved solids															 	
		Other canetituents															
per million		(SiO ₂)															
	1 3	(B)		0.13	0.12	0.11		60.0		0.11							
	Fluo-	e (E)															
ports per million		trots (NO ₃)															
ă	Chio-	(CI)		<u> 2.71</u>	95 2.68	94 2.65		<u>%</u> 2.71		95 2.68							
ē	- Ing	fate (SO ₆)		309 5.44		305		307 6.40		<u>305</u> 6+35							
constituents	Bicar -	bonats (HCO ₃)		<u>143</u> 2.34	<u>149</u> 2.44	153 2. 50		<u>155</u> 2.54		156 2.56							
Minerol cont		(C 0 3)		0.00	0.00	0.00		0.00		0.00							
Mine	Potos-	Eng X															
		(Na)		109	97 4.22	102		107 4.65		113 4.92							
	Moone-	(6W)															
		(Co) (Co)															
	I			8.2 ⁸	8.2 ⁸	7.7 ⁸		8.2		8.4							
	Specific conductance fmicrombos	ai 25°C)		1139	1141	1162		1147		1150							
	p e a	%Sot		104	100	101		IOI		128				·			
	Dissolved	ppm %Sot		8.8 104	9.2	10.4		10.4		12.4							
	Temp			76	68	58		59	_	63							
	Discharge Temp			100 est.	loo est.	100 est.	Dry No flow	149	Dry No flow	140	Dry No flow	Dry No flow	Dry No flow	Dry No flow	Damp No flow		
		sompled P.S.T	Water Year 1962-1963	10-3-62 1025	11-13-62 0815	12-4-62 0820	1+10-63	2-7-63 1600	3-7-63 1230	4-4-63 1030	5-9-63	6-5-63 1000	7-2+63 2030	8-2-v3 1200	9+5-63 1930		

	WATER
TABLE D-3	OF SURFACE
	NLYSES

ANALYSES OF SURFACE WA

LOS ANGELES DRAFINGE PROVIDICE U

LOS ANJELES AQUEDUCT NEAR SAN FERNANDO (Station 70)

	Anglyzed by ^C		LADWP	LADWP	LADWP	LADWP	LADWP	LADWP	LADWP	LADWP
-	e e		.022 .051 .066		.022 LA .051 .051 .092	.051 LA	.000 LA			
	Hardnass brd - Caliform ^D as CaCO ₃ 117 MPN/mi Tatoi N C ppm ppm		000	0.92 0.51 0.16	0,0,0,0	•••	<u>, ,</u>	0.16 0.051 0.051	16.0 9.2 9.2	16.0 10.0 2.2 2.2
Tur-	- piq -		<i>ت</i> ر	00	5	5	m	σ.	ao	α
	Mardnass as CaCO ₃ Tatai N C PPm Ppm			1						
	eent H eod - a ium Ta			75		72	8	8	8	ð
a 10	solide in ppm									
<u>2</u>										
	Other constituente		$NH_{3} = \frac{0.00}{0.02}$ $NO_{2} = \frac{0.02}{0.23}$ $N = \frac{0.23}{0.01}$ Fe = $\frac{0.01}{0.01}$	$NH_{3} = \frac{0.00}{0.02}$ $NO_{2} = \frac{0.02}{0.02}$ $N = \frac{0.400}{0.001}$ Fe	$MH_3 = 0.02$ $NO_3 = 0.01$ $N = 0.34$ $Fe = 0.04$	AS = $\frac{0.27}{0.02}$ NO ₂ = $\frac{0.02}{0.02}$ N = $\frac{0.32}{0.04}$ Fe = $\frac{0.04}{0.04}$	AS = 0.023 $N = 0.20$ $Fe = 0.08$	$NH_3 = \frac{0.01}{0.025}$ AS = $\frac{0.02}{0.05}$ Fe = $\frac{0.05}{0.05}$	Fe = 0.20 N = 0.32	Fe = 0.20 N = 0.32
	Silica (SiO ₂)		54	55	81	8	24	24	2	2
ulion	Baran (B)		0.57	0.44	0.45	0.54	0.48	8-46	0.44	11 ° 0
million per million	Fluo- ride (F)		0*00	0.63	0+52	0.03	0.51	0.58 0.03	0.56	0.56
ports per million valents per mill	Ni- trate (NO ₃)		0*0	0.6	0*5	0.5	2.0 0.04	$\frac{0.1}{0.01}$	0.4 0.01	0.4 0.01
ports p equivalents	Chto- ride (CI)		19	16	15	15 0.42	19 0.52	<u>19</u> 0.52	18 0.51	<u>18</u> 0.51
Ē	Sul - fote (SO ₆)		88	50	19	21	29	37 0.80	27 0.57	27 0.57
atituents	Bicar - bonate (HCO ₃)		;	ł	I					
Mineral constituents	Carbon - 1 818 (CO ₃)		;	1	1					
Win	Potos- sium (M)		4. 3	3.8	3.6	3.7 0.10	3.8 0.10	<u>5.7</u> 0.15	4.6 0.12	4.0 0.12
	Sadium (No)		07	61	<u></u>	35 1+5	31 1+35	40 1.75	<u>36.3</u> 1.56	1+5 36
	Magne- s:um (Mg)		6.8	4.6	<u>4,1</u>	0.1 0	6.8 0.6	7.3	5.4 0.44	5.4 0.44
	Calcium (Ca)		5	81	55	22 1.1	27 1.35	24 1.2	24.8 1.24	25 1.25
	I		8.48 ^a	8, 38 ^a	8.40 ⁸	7.96	9.04	8.24	8.12	8.12
	apectatic conductance (micromhos at 25°C)		385	313	296	29h	339	353	336	336
	1					16	76	92	90.5	III
	Dissolved asygen ppm %Sc		8 8 8	9.6	10.08	12.0	52.7 10.2	10°†	9*8 8	ф დ
	Te a		63	59	25	£ 1	52.7	20	19	53.6
	Discharge Temp in cfs in oF		494	347.1	ţt. L	11.86	203	414	1°101	1.104
	Date ond time eampled P.S.T	Water Year 1962-1963	10-16-62	11-13-62	12-18-62	1-15-63	2-27-63	3-19-63	4-16-63	5-21-63

TABLE D-3 ANALYSES OF SURFACE WATER

LOS ANGELES DRALTAGE FROVINCE U LOS ANGELES AQUEDUCT NEAR SAN FERNARDO (Station 70) (continued)

	Analyred by C		LADWP	LADWP	LADUP	LADAP
	Hordness Tur-Coliformb os CaCO ₃ ity MPN/mi Total N.C.		5.1 2.2	0.0	0.0	0.0
	- 19-4 - C		9	10	6	v
	Hordness os CoCOs Totol N C	E d d				
	Hord ps C		76	62	62	9 0
	Per - Per -					
	anti port					
	Other constituents		Fe = 0.05 AS = 0.007 N = 0.400	Fe = 0.06 AS = 0.013 N = 0.28 5 - day BOD = 1.8	Fe = 0.04 NH3 = 0.02 N = 0.42 5 - day BOD = 1.4	Fre = 0.03 A5 = 0.00 9-day 500 = 2.1
	Silico (SiOg)		8	18	17	18
	5		0.59	0.33	0* 30	0.30
milion	Flup- ride (F)		0.02 0.02	0.03	0.34 0.02	0.32
6	1 -		0.00	0.3 0.01	0.6 0.02	10.0 7.0
ta in porta p	Chio- Chio-		17 0.48	0.32	12 0.32	11 0.30
5	Sul - fote (SO ₆)		22 0.45	23 050	21 0.45	21 0-45
afituent	Bicor - bonste (HCO.)					
Mineral constituents	016 016 (CO3)					
, ci M	Potos- Corbon - Bicor- sium 016 bonste (K) (CO ₄) (HCO ₄)		3.8 0.10	<u>3.1</u> 0.08	3.4 0.09	0.0 0
	Spdium (ND)		32 1.4	<u>25</u> 1.1	26 1.1	24 7.05
	-engra mu:s (pM)		5.4 0.44	<u>3.4</u> 0.3	<u>3.9</u> 0.3	<u>3.4</u> 0.3
	Colcium (Co)		22 1.1	<u>19</u>	<u>18</u> 0.9	1.0 1.0
	I		8.38	3°00	7.90	8.12
	Specific conductance (micromhos b1 25°C)		315	276	541	23r
	Diessived 01999		8	98	91	&
			8°5	8.7	8.6	
	Te ap		29	11	2.02	12
	Dischorge Temp in Cfs in of		498	r 95	495.3	4.95.3
	Dote and time sampled P S T	Water Year 1962-1903 (continued)	6-18-63	7-23-63	8-20-63	

OF SURFACE WATER TABLE D-3

ANALYSES

COLORADO RIVER AQUEDUCT AT LA VERNE (Station LOS MIGELES

(69)

Analyzed by c QMW QMM UMP) GMN QMM QMM QMW CLWIN CIMIN Hardness Did - Caliform^b as CaCO₃ 11y MPN/mI 0.8 0.8 0.9 1.2 1.1 231 Totol N C ppm ppm 229 230 229 348 348 353 353 343 348 341 351 351 cent sod -39 39 39 38 38 38 9 H 39 Totol F dis-solved solids in ppm 712 722 723 716 726 721 728 126 724 nitrogen = 0.000Organic nitrogen = 0.150 Other constituents Free $CO_2 = \frac{2}{119}$ CaCO₃ = $\frac{119}{119}$ co₂ = 1 $\frac{0.01}{\cos^2} = \frac{1}{2}$ $CaCO_3 = \frac{122}{122}$ Free $CO_2 = \frac{1}{2}$ -1 ----1 1 $CaCO_3 = \frac{122}{12}$ c02 = c02 c02 Al = Free Free Free Iron Free Free Silica (SiO₂) 9.8 9.6 9.3 0.0 6.6 ; 0.13 Baron (B) 0.13 ÷ equivalents per million ports per million 0.4 Flue-ride (F) 0.4 0.4 0.02 0.4 0.4 0.4 0.4 0.04 hrate (NO₃) 2.0 1.6 1.6 2.21 2.03 2.1 2.0 2.9 1.8 91 2.57 93 2.62 94 2.65 94 2.65 Chio-ride (CI) 94 2.65 98 96 2.71 94 2.05 94 2.65 321 Sul -fate (SO₆) 314 312 312 318 317 313 312 312 5.49 ë constituents Bicar-banate (HCO₃) 2.38 137 2+33 2.35 145 2.38 148 149 2.44 149 Carbon-61e (CO3) 203 1 0.03 00.00 0.00 0.00 0.00 103 10.03 0.00 Mineral Potos-sium (K) 4 0.10 5 0.13 5 0.13 50.13 50.13 50.13 5 0.13 50.13 5 0.13 Sodium (Nd) 100 105 109 104 104 103 104 102 103 Magne-s:um (Mg) 2.42 30 2.42 30 29.5 30 30 30 30 30 30 Calcium (Ca) 92 90 91 87 89 4.44 06 1.1 91 4.54 91 93 4.64 8.3^b 8.^{1, b} 8.2 8°7 8.4 8.4 8.4 8.4 H Specific conductance (micromhas at 25°C) 1115 1130 1125 1120 1075 1120 %Sat Dissolved osygen Edd Discharge Temp in cfs in ^oF 56 59 63 99 54 Water Year 1962-63 May Composite Sample June Composite Sample October Composite Sample December Composite Sample January Composíte Sample February Composite Sample March Composite Sample April Composite Sample November Composite Date and time sampled P S.T Sample

		Anolyzed by c			CEMW	CEMW	CHW
		Hordness Did - Caliform A as CaCO3 111 MPN/mr					
ł		try A			0.5		0.5
ŀ		CO3	U E d d		523	218	215
		Horde oe Co	Totol N C PPm PPm		337	324	317
		Cent cent	Ę		39	140	70
	Tabal	dis- cent solved sod -	in ppm		702	685	665
			Other constituente		$\frac{8.9}{\text{Free}} \frac{\text{Cacco}_3 = \frac{11 \text{L}}{2}}{\text{Free}^{2} \text{Co}_2 = \frac{2}{2}}$	$\frac{9.0}{\text{Free}} \frac{\text{CacCO}_3 = 106}{\text{Co}_2 = 2}$	$9.0 \ \text{CacO}_3 = \frac{102}{2}$ Free $\cos = \frac{2}{2}$
		Boron Silico	3) (Si		8	9.	9.
	nillion	- Bo			0.4 0.02	0.4 0.02	0.4 0.02
			13) (F)				
	administrate	ž	(NO ₃)		0.03	0.02	0.9
(pa	i e		(C)		92 2.59	<u>92</u> 2+59	88 2.48
ontinu	5		(\$0 ⁴)		<u>307</u> 6.39	<u>300</u> 6.24	295 6.14
(continued)	astituent	Bicor-	(HCO ₃)		<u>139</u> 2.28	<u>129</u> 2.12	124 2.03
	Mineral constituente	Carbon	(CO ₃) (HCO ₃)		0.00	0.00	0*00
	N	Potos	۲. ۲		<u>6</u> 0.15	5 0.13	5 0.13
		Sadium	(N 0)		101 1.39	102 4.44	97 4.22
		Mogne-	(Ca) (Mg)		29	28.5 2.34	29 2•38
		Calcium	(Ca)		87 4.34	83 4.14	79 3.94
		I			8.1	8°0	8.1
		conductance (micromhos PH	0 0 10		1090	1175	1060
		Dissolved oxygen	ppm %Sof				
ł			Ĩ				
		Discharge Temp in cfe in oF					
		Date and time P.S.T		Water Year 1962-1963 (continued)	July Composite Sample	August Composite Sample	September Composite Sample

TABLE D-3 ANALYSES OF SURFACE WATER

LOS ANGELES DRAILIAGE FROVENCE U

	WATER
TABLE D-4	OF SURFACE
	ANALYSES

LAHOWTAN DRAINAGE FROVINCE W

MOJAVE RIVER AT THE FORKS (Station 67a)

	Analyzed by c			~		e:	24	24	ж		ж	ed.	æ	e	it.
	orm b I/mi			DWR	DWR	DWR	5 DWR	ING	DWR	PNN	Hwa	C DWR		1WR	лм(r
	Tur- bid - Coinform b uty MPN/mi			62 23	× 700	230 6	$\sum_{\substack{k,5\\k,5\\k,5}}$	23 62	700	62 62	62 62	62 6.1	23 6•2	700 1	6 5 6
Tur-	- piq - ti n ppm			< 52	× 23	× %	< 52	< 52	< 25	√ 25	< 25	 25 31 	25	× %	5.
	CO3	N C		10	0	0	0	0	0	0	0	0	0	0	0
				113	88	th		17	72	63	59	09	8	98	116
Per	Solution			82	61	10	20	53	49	42	17	27	27	44	-5-
Totol	Totol dis- solved solved in ppm										135				345
	Other constituents										$A_{\rm BS} = -\frac{0.0}{2.00}$ $P_{\rm U_{\rm I}} = \frac{0.02}{2.02}$				Pu _{lt} = <u>0.12</u>
	Silico	13015									22				25
lion	Boron	(P)		0.29	0.23	0,10	0.08	0.09	0.07	0*03	0.06	.11	0 , 12	0.15	02:00
per million	Fluo-										<u>1.2</u> 0.06				11.5 0.211
	Ni -	(°0)									0.5 0.01				N C
ports pe equivolents	Chio-			16 0.115	<u>11</u> 0.31	<u>25</u> 0.71	<u>11</u> 31	8 0.23	5 0.11	7 0.20	70.20	9 0.25	12 0.31	11 0.31	<u>15</u> 0.51
ē	Sui -										<u>15</u> 0.31				2.117 2.113
	B.cor-			126 2.06	127 2.08	185 3.04	120 1.96	126 2.00	111 1.82	94	1.64 0	<u>117</u> 1.92	<u>138</u> 2.26	<u>161</u> 2.6Ц	2.68 2.68
Mineral constituents	1	(co3)		0	0.00	0.00	0000	0.00	000	0.00	0000	000	0000	0.00	00000
Miner	Potos- C	1						010			<u>1.14</u> 0.04				3.2
	Sodium			71	62 2+70	43 1.87	<u>38</u> 1•65	37 1.61	32 1•39	21 0.91	211 01	38 1.65	116 2.00	<u>53</u> 2.31	3.31
	S .eufo	(6 W						-			<u>. 3.0</u>		-		8*5 0.70
	E	(Co) sum (Mg)													
		<u>9</u>		7.7 ^a	7.5 ^a	7.3ª	7.9	7.8	09 	8.0	8 •0 18	7.8	7.h	7.2	7.6 33 1.65
	conductance pH (micromhos pH	5		565 7.	hiu3 7.	472 7.	332 7.	311 7.	293 7.	220 8.	217 8,	311 115	371 7.	1. 014	547 7
0	Conducto (micro	4 04			~		Ξ.	ГС ГС	~~~~~	8	61	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m		<u>v</u>
	Oissolved oxygen	ppm %Sot		6 85	1 81.1	L 83	0 86	0 89	8	8 94	SCI 4.01	10.0 109	0 89	1 97	9.0
				7.6	8.4	8.u	10,0	10°)	8*5	10.8			8.0	8.4	
	temi in of			70	58	60	18	12	20	52	63	68	20	74	73
	Discharge Temp in cfs in oF			eat.	7 est.	10 est.	15 est.	20 est.	20 est.	20 est.	30 est.	25 est.	20 est.	15 est.	12 est,
		P S.T	Water Year 1962-63	10-4-62 1320	11-5-62 1040	12-3-62 1435	1-10-63 1145	2-6-63 1045	3-6-63 1120	4-5-63 0830	5-9-63 1800	6-5-63 11,30	7-1,-63 1050	8 -5- 63 1200	2-6-63 1200

TABLE D-4 ANALYSES OF SURFACE WATER LAHONTAM DRAITIAGE PROVIDED W

MOUAVE RIVER NEAR VICTORVILLE (Station 67)

		7	1												
L		Anelyzed by C		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
	-	a bid - Coliform		62 62	2400 620	< 14.5 16	< 14.5 6.0	700 62	130 21	23	700+	24.00 62 0	62 62	230 7000	62
	Tur-	- piq -		X: X:	<25	<25	<25	50)	<:2	<25	<25	<25	<25	5:5	30
		Hordness os CaCO ₃		0	0	0	0	0	0	0	0	0	0	0	0
				0770	146	141	136	130	133	132	710	145	153	152	157
	Per- sod -			77		70	39	10	710	10	٤ų	42	39	42	6
L	Totof dis- solved solide in ppm										275				335
		Othsr constituente									AS = 0.00 $POL = -0.00$ $ABS = -0.00$				Pol ₄ = <u></u>
	ľ	Silice (SiO ₂)	1								25				53
	U01110	Boron (B)		0.10	0.12	0,10	20.07	0*03	0.10	0.08	0.12	0,12	0,13		0.12
million	Ē	Fluo- ride (F)									<u>0.03</u>				0.7
1.0.1		N1- trots (NO ₃)									<u>1.+5</u> 0.02				1.5 0.02
od	equivalents	Chio- ride (CI)		<u>30</u> 0.85	28 0.79	25	26 0.73	2 <u>3</u> 0.65	26 0.73	25	28 0.79	29 0.82	29 0.82	<u>31</u> 0.87	<u>ु. 96</u> <u>ु. 96</u>
č		Sul - fors (SO4)									<u>140</u> 0.814	_			0.95 0.95
1.tuents		Bicor - bonots (HCO ₃)		<u>182</u> 2.98	<u>184</u> 3+02	<u>185</u> 3.04	173 2.84	$\frac{18\mu}{3.02}$	182 2.95	166 2•72	3.16	<u>194</u>	<u>196</u> <u>3.22</u>	200 3.28	<u>3</u> .28
Mineral constituents		C orbon - E 018 (C 0 ₅) (0*00	0.00		0.00	000	0.00	9.6 0.32	0.00	0.00	00.0	0000	00.00
W		Potos- C s.um (K)	1								1.8 0.05				<u>09</u>
İ	$\left \right $	Sodium (No)		145 1. 96	20 0+87	43 1.87	1.74	40 1.74	1.78 1.78	1.78 1.78	2.09	2.13	<u>11.96</u>	<u>51</u> 2.•22	2.01 2.01
		Mogne S sum (Mg)							i.		10 • 82				10 0*82
		Colcum (Co)	-	-							38 1.90				2.30
-	1	I		7.8ª	7.5 ^a	7.33	8.1 ³	7.6	8.0	7.6	7.9	7.6	7.li	7.8	් අ
	Decific	(micromhos at 25°C)		1472	1128	472	451	437	459	4,58	459	179	489	161	515
-	S	Sot at		80	15.27	83	84	68	74	16	16	- 96	104	103	26
		049980 049980 000 0/0 Sof		7.2	7.6		8° 8	8.8	7.4	9•6	9.6	. 0.	9.2	9*0	9 9 9
-				20	64	90	56	110	60	35	09	-99	72	73	41
	•			15.4	21	21	30	35	32	28	24	18	15	13.5	71
	Dots and time sompled P S T		Water Year 1962-63	10-4-62 1215	11-5-62 1230	12-3-62 1600	1-10-63 1300	2-6-63 0925	3-6-63 09:00	lı-5-63 0900	5-9-63 1845	6-5-63 1600	7-4-63 0930	8-5-63 1100	9-0-63 1000

TABLE D-5 ANALYSES OF SURFACE WATER

COLORADO RIVER DRAINAGE PROVINCE X

COLORADO RIVER NEAR TOPOCK (Station 54)

	Anolyzed by ^C	ĺ		DWR	DWR	
	Hardnass bid - Caliform Analyzed as CaCO ₃ ity MPN/mi by ^C			0.45 6.2	6.2 62	
Tur-	- piq - hij u pid	:		52	25	
	1838 1003	U E N N N		204	191	
	Totol Par- dis- solved sod- solved sod- solved aud- solved bud- as CaCO3 ium Total NC			338	317	
i a				110	39	
Totol				720	650	
	Other constituents	- 1		$\Delta s = 0.00$; $P0_{11} = 0.00$ ABS = 0.01	Po _{l1} = <u>0.00</u>	
	Silico	SiO ₂)		91	12	
lion	Boron Silico	(8)		0.15	<u>0,16</u>	
er mil	Flua-			0.03	0.64	
parts per million equivalents per million	- iN		-	2.5 0.04	2.0 0.03	
equival	Chia-			91 2.57	<u>83</u> 2.311	
ē	Sul -	(SO ₆)		296 6.17	276 5.74	
stituents	Bicar -	(HCO ₃)		<u>163</u> 2.68	<u>154</u> 2.52	
Mineral constituents	Carbon-	(CO3)		0.00	0*00	
Mir	Potos-	E E E E E E E E E E E E E E E E E E E		5.2 0.13	<u>11.04</u> 0.11	
	Sodium	(N a)		105	% [1.1B	
	Magna-	(Mg)		27 2.22	26 2.11	
	Calcium	(Ca)		<u>91</u> 4.54	84 4.•19	
	H			8°2	8.0	
Snarthr	conductance (micramhos	0-67 10		1081	101	
		%Sat		106	100	
	Dissolvad dsygen	mqq		9.6	9.2	
	Terp In DF			69	68	
	Dischorgs Temp in cfs in ^o F			11,300	10,100	
	Oate ond time	P.S.T.	Water Year 1962-1963	5-16-63 1600	9-19-63 1630	

	WATER
TABLE D-5	SURFACE
TAB	Ч
	VLYSES

COLORADO RIVER DRAINAGE PROVINCE X ANAL

LAKE HAVASU, COLORADO RIVER AQUEDUCT INTAKE (Station 56d)

	Analyzed by ^c			All D	CD-SM	UMM	CMM	UMM	QMM	QMW	QMM	QMM	(IMM)	CMM	0 MW
	bid - Coliformo			1	ł	ł									
	- 11			0•3	0.3	0•3		0.2	0.8	0.4			0.6	0•3	
	Mardnese ae CaCOs	N		220	225	226	228	227	229	225	226	215	125	211	204
		Tatal		331	339	346	351	353	353	34.8	346	336	322	1TE	308
	cent e o d	5		다	1	07	39	39	38	39	37	38	38	39	10
Tatal	eolved solved	in ppr		101	704	732	725	723	716	777	696	683	659	658	651
		emeninano istro		1	1	Free CO ₂ = 1 ppm br>Alkalinity = 123	Free CO ₂ = 1 ppm Alkalinity = 120	Free CO ₂ = 2 ppm Alkalinity = 121	Free CU ₂ = 1 ppm Alkalinity = 107	Free CO ₂ = L Alkalinity = 103	Free CO ₂ = 8 Alkalinity = 104				
	Silica	(SiO ₂)		9.8	10.1	<u>9.9</u>	10.2	9.8	9.0	5.3	8.8	9.3	10.3	10.7	10.8
uol	Baron	8		I	ł	1			_						
per million		(F)		0.5	0.4	0.02 0.02	0 <u>, 02</u> 0, 02	0.02 0.02	0.4 0.02	0.02 0.02	0.14 0.02	0.44 0.02	0.4 0.02	0.02 0.02	0.44 0.02
	1 Ž	(NOS)		1.5 0.02	1.6	2.2 0.04	1.0 0.02	2.1 0.03	2.2 0.04	2.14 0.04	2.2 0.03	1.7 0.03	<u>1.2</u> 0.02	1.2 0.02	<u>0.02</u>
ports pe equivalente	Chio-	(CI)		96 2.71	<u>94</u>	96 2.71	96 2.71	94 2.65	91 2.57	92 2.59	90 2.511	88 2.18	86 2.113	87 2.15	86 2-113
Ē	Sul -	(SO4)		<u>306</u> 636	307	315	312	309	310 6.45	307 6.39	302 6.28	293 6.09	289 6.01	289 6.01	284
stituente	Bicar -	(HCO3)		2:13	1.34	2.419	150 2.46	154 2.53	151 2.118	150 2.46	146 2.39	148 2.13	$\frac{1.31}{2.15}$	126 2.07	<u>127</u> 2.08
Mineral canstituents	arbon-	(CO ₃)		20.07	5	0*00	0.00	0*00	0*00	00.00	0.00	0.00	0.00	0.00	00
N.		(X)		4 0.10	SEL-0	<u>, 13</u>	<u>5</u> 0.13	5 0.13	6 0.15	<u>5</u>	5 0.13	5 0.13	5 0.13	6 0.15	5 0.13
		(D N)		106	100	109	104 452	104	100	102 11-11	95 [1.13	96 1.18	92 1.00	94 1.09	95 [4.13
		(6W)		30	29.5	30 2.17	<u>30</u> 2.117	<u>30</u> 2.147	20.5 2.51	29.5 2.12	29.0 2.38	29.5 2.112	29 2.38	29	2.26
	Calcium	(Co)		83 1.11	87	20	25-17	92 <u>1.59</u>	91 1.54	91 10	91 4.54	86 1.29	81 14.04	78 3.89	78 3+89
	Ĩ			8 . 1ª	I	B. 3 ^a	8.4	8.2	8,3	8.3	8.3	8.1	8.3	7.7	7.4
	conductance (micramhas	17-67 10		0111		0611	0611	1130	1120	1103	1035	1085	1050	1050	0701
	p us	ppm %3at		1	1	1				~=					
	Dissolved osygen	Edd		1	1	1									
	Tamp oF	h		1	69	61	R	50		63	72	77	77	82	80
	Discharge Tsmp in cfs in aF			1	I	ł									
	and time	PST	Water Year 1962-1963	10-2-62	11-21-62 1005	12-11-62	1-1-63	2=5-63	3-5-63 0915	42-63 0940	5-7-63	6=18-63	7=16-63	8-6-63	9-3-63 1300

	3			
	Anolyzed by ^C	DWR	DWR	
-	high MPN/mi	2•3 130	· 115	
Tur-	- Ali	< 25	<25	
	Hordness as CoCO ₃ Tatol N C ppm	212	197	
		3141	317	
P er-	eod -	39	140	
Totol	solved solids in pom	745	070	
	Other constituente	Ås = 0.00:P04 = 0.00 ABS = 0.002	Po _{l1} = 0.00	
	Silico (SiO ₂)	위	11	
Lion	Boron (B)	0,16	0.16	
tion 55) r milion per milion	Fluo- ride (F)	0 <u>.54</u>	0.00	
COLORADO RLVER BELGW PARKER DAM (Station 55) peris per mulion nerol constituents in <u>equivolents per m</u> u	Ni- Irote (NO ₃)	2.5 0.04	1.5 0.02	
RKER DA	Chio- ride (CI)	92 2•59	86 2.13	
ELOW PA	Sul - fote (SO ₄)	306 6.37	280 5.84	
ADO RIVER BE constituents	Bicor- bonote (HCO ₃)	<u>161</u> 2.64	2.40 2.40	
COLORADO	Carbon - 010 (CO3)	0*00	0°00 0	
O IN	Potos- sum (K)	5.2 0.13	14.4 0.11	
	Sodium (N a)	105	98 4+26	
	Magne- aum (Mg)	30 2.47	26 2.11	
	Calcum (Co)	89 <u>1111</u>	84 4.19	
	I	ນ. ຍ	8.4	
Saecific	conductance (micramhas at 25°C)	1095	1031	
	ved en 9/o Sot	109	84	
	Dissolved CC osygen (7 ppm 0/oSoi	9°8	7.0	
		70	78	
	Diecnarge Temp In cfs in OF	13,500	12,500	
	pote ond time PS.T	Water Year 1962-1963 5-16-63	9. 1 = 63	

D-30

ſ		Ariologie			UMR.	DWR	 مراودات بر ا		 	 	
		Hardness bid - Caliform as CoCO ₃ 119 MPN/mt			1.3 <.45	£89	 				
	1.11	- 19-9			<25	1120					
		:00	U E		222	178					
		Hard as C	PPm PPm		360	306					
	1	tu o o			39	42					
	Totol	eolved sod -	mgq ni		755	650					
		Other constitutede			$A_{3} = \frac{0.005}{0.10} PU_{1} = \frac{0.02}{0.10}$	9000 =					
		1	- 1		AB	Polit	 	<u> </u>	 	 	
		Baron Silica	(SiO		21	의	 			 	
6	Ilion	Boro	9		0.12	0.15	 		 		
all a	E	Fluo-			0.52 0.03	0.70					
oorts eer million	equivalente per million	- IN	(NO ₃)		2.5 0.01	2.5 0.04	 			<u> </u>	_
	vinpe	Chio-	(C)		100 2.82	83 2•34	 				
oorts eer m	£	Sul -			<u>309</u>	266 5.55					
	stifuent	Bicar-	(HCO ₃)		<u>168</u> 2.75	2.56	 		 	 	
	Mineral constituente	Carbon -	(c 0 3)		0*00	0*00					
	Ň	Potos-	(X)		5.0 0.13	5.2 0.13					
		Sodium	(0 N)		110	105	 		 		
		-eubow	(M)		29 2.38	2.22			 		
		Catcium			97 14.814	3.89					
L		E.	3		8.4	8.0	 		 	 	
	Scarific	conductance pH (micromhos pH	C7 10		7911	1000					
			ppm %Sat		107	103					
		Dissoived osygen	Edd		0*6	8.6					
		Temp in oF			17	78					
		Discharge Temp in cfe in oF			10,700	5940					
		Date and time	P.S.T.	Water Year 1962-1963	5-16-63 0830	9-19-63 1000					

TABLE D-5 ANALYSES OF SURFACE WATER

COLORADO RIVER DRAINAGE PROVINCE X

		- 1			
		Analyzed by ^c	DWR	DWR	
	2	Hordness bld - Collform as CoCO _S ity MPN/mi Toloi N.C. n.phm ppm ppm	240 23	62 11 13	
	Tur-	- 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25	26	
		PPRC S	225	206	
			365	340	
	Per	eod - ium	43	145	
	Total	solved solide in ppm	830	785	
		Other constituents	AB = 0.00;F0 ₁ =0.02 ABS = 0.02	Pol ₁ = 0.00	
		Silico (SiOg)	12	궤	
	lion	Baron (B)	0.14	0.20	
a 56a)	per million	Fluo- ride (F)	0.60 0.03	0 <u>.52</u> 0 <u>.03</u>	
(Statio	equivalents per milian	NI- Irofs (NO ₃)	2.0 0.03	<u>1.5</u> 0.02	
OT KNOB	pd equivo	Chia- ride (CI)	<u>3.30</u>	<u>3.36</u>	
EAR PIL	ē	Sul - fote (SO ₄)	<u>329</u> 6.85	316 6.58	
CANAL NI	constituente	Bicor- banofe (HCO ₃)	171 2,80	1114 2.36	
ALL AMERICAN CANAL NEAR PILOT KNOB (Station 56a)	Mineral car	Carbon- 010 (CO3)	0 <u>*00</u>	9.6 0.32	
A LTA	Min	Patos- mum (K)	5.2 0.13	5.0 0.13	
		Sadium (Na)	<u>129</u> 5.61	129 <u>5.61</u>	
		(GM) mus	28 2.30	<u>31</u> 2.55	
		Colcium (Co)	100	85 4.24	
		рн ^а (О.)	8.2	8.4	
	Const.	(micromhas PH a at 25°C) (a.)	1256	1212	
		ved len º/oSot	113	103	
		Orssolved oxygen ppm 0/oSof	1°6	B.0	
		Eo Eo	78	85	
		Dischorge Temp In cfs in oF	6000 Est.	6100 Est.	
		00te and time sompted P S T	Water Year 1962-1963 5-15-63 1000		

TABLE D-5

COLORADO RIVER DRAINAGE PROVINCE X

Analysed by ^C DWR DWR 2.3 62 25 õ 668 597 878 787 Total dis-solvad sod -solids sod -ium T 32 5 2645 2420 As = 0.00;P04 =0.04 Other constituents **- 0.02** Pol Silico (SiOg) 8 22 Boron (B) 0.66 0.72 equivalents per million ports per million 0.05 0.05 1.20 Fluo-rida (F) Ni-Irote (NO₃) 2.5 0.01 7.4 800 22.56 Chio-810 22.84 592 12.34 549 11.11 Sul -fots (SO₄) £ Minsrol constituents Bicar-banata (HCO₃) 256 4.20 232 3.80 C ar bon -(C 0 3) 0.00 0.00 Potos-(X) 8.0 0.20 7.2 Sodium (Na) 525 22.84 520 22.62 Magna. Rum (pM) <u>85</u> 6.99 73 Catcium (Ca) 212 10.58 <u>195</u> p Dissolved Specific arygen (m.crombas ppm (0.250) 8.0 8.2 3984 3745 121 121 10.4 9.6 Descharge Tamp in cfs in aF 74 82 1070 1340 Water Year 1962-1963 Oote ond time somplad PST 5-15-63 1100 9-11-63 1230

ANALYSES OF SURFACE WATER TABLE D-5

× COLORADO RIVER DRAINAGE FROVINCE

COLORADO RIVER AT YUMA ARIZONA (Station 56)

	A nolyzed by C		DWR		DWR	
	Hordness bid - Coliform ^b os CoCO ₃ bid - MPN/mi		700+	4002	130	
			20	ā,	25	
	0.3 C 0.3	U E Z d	c78		373	
	Hordr os Co	Tota!	022	J	563	
	ten -	5	ц Ц	R	C,	
Totol	dis- solved sod -	E dd u	O.lec	0	11,30	
		Uther constituents		ABS 0.12	Pol_1 = 0.08	
	Silico	(SiO ₂)		귀	17	
lion	1 8	(B)	ĩ	0. 24	0.42	
milion er mil	Fluo-	(F)	Ì	0.01	0.05	
ports per million equivalents per million		(NO ₃)		<u>0*08</u>	<u>5.0</u> 0.08	
Mineral canetituents in equivalents per milito	Chlo-	(CI)		710 20.02	<u>355</u> 10.01	
e 		fote (SO _e)		<u>530</u> 11.05	1116 9.30	
atituent	Bicor -	bonote (HCO ₃)		237 3.88	<u>232</u> 3.80	
Mineral constituents	C or bon -	(C03)		0.00	0*00	
Mir	Potos-	E(X)		6.2 0.16	5.8 0.15	
		(0 N)		1115 19.36	268 11.66	
	Moone-	muis (pM)		62 <u>5.10</u>	52 14+27	
		(Co)		207 10.33	140 6*99	
	Hd	[†]		7.8	8.2	
	Specific conductance	at 25°C		3413	2179	
				106	108	
	Dissolved	Edd		9*2	8.8	
				73	90	
	Dischorge Temp			263	17.6	
		sompled P.S.T	Water Year 1962-1963	5-15-63 1205	9 -11-63 1100	

TABLE D-5

ANALYSES OF SURFACE WATER COLORATO FITM, PLAINER INFILM

TABLE D-5 ANALYSES OF SURFACE WATER

ALAMO RIVER AT INTERNATIONAL BOUNDRY (Station 59) COLORADO RIVER DRAIIMGE FROVINCE A

	2 ed	0							
	Anoly	by c		DWR	DWR	DWR	DWR	DWR	DWR
	I form b	PN/mt		62 62	23 6	7000 24,00	6200 24,00	62 62	62 70
-	Hordness bid - Collform ⁶ os CoCO ₃ 117 MPN/mi			25	25	115		25	25
'		N CO3		559 < 25	3605	<i>μ</i> 13	960 < 25	9566 25	627 \$ 25
1		1		797	604	628	1260	1240	689
	Cant.	- E		59	70	5 <u></u>	63	61	59
100	dis-	solids in ppm					lı280		2765
	1				-		0.10		
		Other constituents					A ₃ = 0.00;P01 = 0.10 ABS = 0.10		.10
		Other c					BS = 0.		PO _μ = 0.10
	-	Silico (SiO ₂)					20 V V		25 P
		Boron S (B)		1.06	1.10	0.72	2.00	1.80	1.35
milion		Flue- E ride (F)					<u>1.04</u>		<u>1.20</u>
ports per million		N1- F trote (N0 ₃)					7.4 0.12		6.2 0.10
port		Chio- rida ti (CI) (N		K	2	10		0	
1	\vdash			<u>692</u> 19.51	84,8 23.91	<u>460</u> 12.97	22 <u>36.10</u>	<u>32.99</u>	31 760 31 21.43
nts in		- Sul - tote (SO _a)		10	m	10	26.22	m	1 831 17.31
nstitue		- Bicor- bonete (HCO ₃)		290 4.76	298 11.88	262	366	<u>346</u> 5.68	<u>320</u> <u>5.21</u>
Minerol constituents		Carbon- 010 (CO ₃)		0*00	0*00	0*00	0*00	0* 00	0.00
Rin.		Polos (X) (X)					13 0.33		8.8 0.23
		Sodium (Na)		<u>553</u>	614 25.01	394 17.14	1000 43.50	896 <u>38.98</u>	600 26,10
		Mogne.					<u>152</u> 12.49		104 8.55
		(Calcium (Co)				-	225 12.72		<u>185</u> 9.23
-	3			7.6 ⁸	7.7	7.4	7.8	7.8	7.8
	uctorice.	(micromhas PH		3808	14176	2870	6173	т 1 π95	4065
		0		0					
	Dissolved	oaygen ppm %S		72	4 101	6 70	8 35	0 88	6 99
-	0 O	bb		6.8	8 10.4	5 6.6	80 2.8	2 7.0	85 7.6
-	Dischorgs Temp	e e		66	1 28	1 65		5 82	
	Discho	c.		2.8	14°E	14.6	3.03	2.55	2.44
	0010	end time sompled PST	Water Year 1962-1963	11-8-62 0610	1-8 - 63 1530	3-12-63 1040	5-14 -6 3 1530	7-9-63 1635	9 - 11-63 1520
		ō ĕ	Wat 196	11-100	1-8	3-1	153	7-9	9+1 152

	1
	1
	1
	1
5	
- 1	1
Ó	
-	1
w.	
ลี	
-	
TA.	1
⊬-	

ANALYSES UF SURFACE WATER

COLORADU RIVER DRAINAGE PROVUNCE X

ALANO RIVER NEAR CALIFATRIA (Station 60)

	1								
	Anolyzed by C			DWR	DWR	DWR	DWR	DWR	ЯМ.C
4	MPN/mi			620 230	500 24,00	7000 24,00	24 , 000 6200	24 1,000 211,000	2400
Hordness Tyr-Coliform ^h as CaCO ₃ Ity MPN/mi Tatol N C APPM				300	250	1150	250	< 25	200
N COS DIS		U E Z d		764	335	657	684	674	\$65
				9446	1007	830	878	850	767
				귟	8	8	55	55	22
Total Per- dis- solved cent solids ium in ppm		in pom					2500		2175
							Poli =0.65 2500		
	Other constituents						53 53 53		2
	her col						As = 0.00; F ABS = 0.22		
		I					AB		Ъ.
	Silico	20is)		N	ml	NI	112	CUL	۳ <u>۳</u> ۱
11.00	Boron	a)		0.52	0.68	0.52	0.64	0.52	9 0
per milion	Fluo-	(E					0.92		8.0
equivalente per mil	Ni-	(N0 ³)					22 0.36		16
*quivo	Chio-			770	872 24.59	670 18.89	690 19.46	648 18.27	220
ç	Sul -		<u> </u>				756 15-76		202
tituente	Bicar-			222 <u>3.64</u>	210 3.44	211 3.46	237 3.88	215 3.52	210
Mineral constituents	Irbon - E	(Co ₃)		00.00	0000	0*00	0.00	0*00	00
Miner	otos- Co	U E E E E E E E E E E E E E E E E E E E		010	010	010	13 0.33	010	82.0 TT
	6	(N a)		518 22.53	591 25.71	4,88 21.23	21.75	485 21.10	15.71 0
		(6 M)		in hi	ŭ/(cv		104 8.55 2	191E.	1-15 1-15
	Calcium Mo						180 8.98 8.98		4 <u>-</u>
		9		7.6ª	2.7	7.8	8.0 8.	8.2	8.2 8-
ef ce	ctance pH	5							
Specific conductance (micromhos		at at a		1 3990	11120	3700	3704	3430	31.95
	Dissolved oxygen	ppm %Sat		8.4 95.4	۲ - 66 ۲	5	8 100	5 119	4°0 20
		ppm			10.4	5.0	8.8	9.2	
Dischorge Temp in cfe in ^o F				72	25	62	72	85	2
				950	776	1074	894	894	1253
	and time	P S.T	Water Year 1962-1963	11-7-62 1610	1-9-63 0825	3-12=63 1305	5-14-63 1220	7-5-63 11,00	9-10-63 1550
									D-36

	WATER
FABLE D-5	SURFACE
TAB	P
	ANALYSES

COLORADO RIVER DRAINAGE PROVINCE X

NEW RIVER AT INTERNATIONAL BOUNDRY (Station 57)

				-		-			
	Anolyzed by C			DWR	DWR	DWR	DWR	DWR	ЯмQ
				13,000 6,200	62,000 Lab accident	150- 1450-	240 mil 700 mil	10,000 620,000	24,000
1	abm abm			22	23	70	25	(35	SE
	Per- cent Hordnass Did-Coliform ^b sod- os CoCO ₃ IIY MPN/mi ium Totol NC			532	590	571	832	118	noe
				704	800	767	1058	1000	2111
				64	63	65	64]	66 1	65 1
Totel	Total dis- solved solide in pom						3940		4120
	Other constituted						$A_3 = \frac{0.00}{1.9} MH_{\mu} = \frac{2.9}{2.11}$ PO _L = $\frac{1.9}{1.9} MH_{\mu} = \frac{2.9}{2.11}$		P0, - 1.25
	Silico	(5+0 _E)					53		2
ullion n	Boron			0.86	0.98	0.88	1.25	1.2	<u> </u>
per million	Fluo-						0.76		96°00
equivolents per million	- 10	(NO 3)					<u>5.0</u> 0.08		0.71 0.71
a quiv	C MIO-	(ĵ			995 28,06	980 27.64	11,90 1,2,02	1450 40.89	11580 1111.55
u: s	Sul -			900 25+38			736 15.34		806 16.79
stituent	Bicor -	(HCO3)		<u>210</u> <u>3.44</u>	256 14+20	$\frac{239}{3*92}$	276 11-52	<u>227</u> <u>3.72</u>	2.551 116
Minerol constituents	Corbon-	(co3)		0*00	0,00	0*00	0*00	0*00	00.0
Min	Polos-	(x)					<u>37</u> 0.95		0.95 0.95
	Sodium	(0 N)		23.23	639 27.80	650 28.28	910 39.59	908 <u>39+50</u>	1000 1,3.50
	Mogne-	(6 M)					<u>9.21</u>		10.85
	Colcium	(Co)					239 11.93		228 11,38
	I			7.73	7.5	7.8	8,1	8.5	8
Specific	Conductance (micromhos			1,013	LL133	14137	6024	5636	6310
	pere d	ppm %0501		85	95	82	81	96	01
	Orestoived oxygen	Egg		7.8	9.6	8.4	6.5	7.2	0
	Temp in oF	•		68	60	63	82	88	2
	Orschorge Temp in cfs in oF			9116	203	249	104	158	175
	001e ond time admoled	PST	Water Year 1962≉1963	11-8-62 0710	1-8-63 1600	3+12-63 0930	5-14 -6 3 1500	7-9-63 1600	
	-								D-37

	WATER
TABLE D-5	OF SURFACE
	ANALYSES

COLORUL MIVER DEMINAGE PROVINCE

NEW RIVER NEAR WESTMORLAND (Station 58)

	Anolyzed by C			DWR	DWR	DWR	DWR	DWR	Zima
	e e							62 Di	
Pm MPN/		**	6200 2300	21,000 6200	2300 6200	240,000 620,000		5400	
Ter-	- bid ity noom				200	450	20	< 25	450
	Hardness Tur- caitarm ^b as coco ₃ 117 Tatoi N C			664	734	615	662	234	65
				851	938	809	866	370	81.8
- -	Total dis- solved sod- solids ium			62	65	64	09	43	62
Tota	Totai dis- solved solids in ppm						2820		2760
	Other constituents						$A_{BS} = \frac{0.005 PO_{L} = 0.60}{0.10}$		Po ¹ = 10.40
	Silico	(SiO ₂)	-				77		21
u01	Baran	(8)		0.84	1.1	0°.91	0.86	0.16	1.0
aullion er mi	Fluo-	(E)					0,70		0°.01
ports per million equivalents per million		(⁶ 0N)		_			15 0.2U		11 8 - 18
poinbe	Chio-	(Cf)		<u>975</u> 27.50	1185 <u>33.42</u>	950 26.79	930 26.23	<u>116</u> <u>3.27</u>	26.65 26.65
Ē	Sut -	(SO4)					687 11.31		68 <u>3</u> 11:•22
struents	Bicor -	(HCO ₃)		<u>232</u> <u>3.80</u>	24,9 1,•08	237 3+88	249 4.08	<u>166</u> 2.72	3. au
Minerol constituents	Carbon-	(C03)		0.00	0*00	0*00	0*00	0*00	00.00
Min	Polos-	E (X)					18 0.116		0.3 <u>3</u>
	F			639 27.80	800 <u>311.80</u>	660 28.71	625 27.19	<u>127</u> 5.52	54° 00 28° 00
	Magne-	(6 W)					88 7.23		91 7-418
	Calcum	(C a)					203		07.118 0.118
	H	1		8°0ª	7.6	7.8	8°0	8.4	α.
Specific	Specific conductance (micramhas at 25°C)			bul 96	5246	87777	4329	1203	μ292
0		2/0 S 01		80.3	71	55	17	78	n e
	Dissolved oxygen	ppm 9/0501		7.2	8.0	5.0	6.4	6.0	\$ N
	Temp P			. 02	Ŕ	68	78	12 72	58
	Discharge Temp in cfs in aF			159	649	785	750	1E9	722
		P S L	Water Year 1962-1963	11-7-62 1750	1-9-63 0745	3=12=63 1210	5-14-63 1320	7-9-63 14,30	9-10-63 1650

TABLE D-5 ANALYSES OF SURFACE WATER

COLORULO RIVER DRATIAGE PROVENCE X

SALTON SEA AT SALTON SEA STATE PARK (Station 68a)

$ \frac{1}{1000000} \frac{1}{1000000} \frac{1}{10000000000000000000000000000000000$			_							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Analyzed by C			DWR	DWR	DWR	DWR	DWR	жи М
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Coliform b MPN/mi			6.2 13	2+3 23	5°6	224	52	23.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tue	- piq				25	25	252	25	52
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Hardness as CaCO ₃ ppm ppm			7609	5443	5594	5866	5862	6097
Decision Test in test					6250	6600	5750	5918	6010	6257
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		cent sad -				77	79		78	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tatal	solids solids						34,340		34, 510
$ \begin{array}{ $		Other constituents						$A_B = 0.005 Po_{11} = 0.06$ ABS = 2.56		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Silica	120.01					~1		~1
During the first intermediation intermediati intermediation intermediati	lian	Boron			7.10	8.3	8.1	8.4	7.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Der milior	Flua- rids	Ĵ,					2.5 0.13		0 <u>,15</u>
During the first intermediation intermediati intermediation intermediati	ants per	<u> </u>								
True Term Annered Annered Continue Annered Continue Annered Continue Annered Continue Annered Continue Contit Contit Contit	eduival				14, 500 409.9	111, 1150 1107.5	11,200 100.1	14,300 403,26	<u>13,700</u> 386.3	111,200,111
Directors Terminal Initial Directors aryon Specific Anticonstronce Directors Anticonstronce Directors Directors<								2		7320 152+50
Directore Term Directore Mode Selective Selective Selective Selective Sele	stituent	Brcor- banate	(HCO ₃)		<u>190</u> 3.12	<u>194</u> 3.18	$\frac{190}{3*12}$	<u>185</u> <u>3.04</u>	<u>180</u> 2+96	<u>3 - 20</u> 3 - 20
Directore Term Directore Mode Selective Selective Selective Selective Sele	erel cor	Corbon - ate	(CO3)		0.00	0.00	0.00	0,00	0*00	8
Districts Tage of a second of a second permission Districts and a second of a sec	Ň	- 0105 - e.um	Ξ				_	10		- 22
Directores Target opposition point Selectific orygon Selectific point Selectific column Model Mechanisme (column Mo		Sodium (Na)			9725 123+0	10,200	9800 126.3	730.65 L	9680 121.0	130.05L
Difference Tage Difference Selective Concurrence PM Read 78 0.0.0 120.5 14,300 8.1 Concurrence Sea 78 10.0 120.5 14,300 8.1 Concurrence Sea 58 9.6 93 14,300 8.1 Concurrence Sea 55 9.8 97 14,300 8.1 Concurrence Sea 55 9.8 97 14,300 8.1 Concurrence Sea 87 10.0 133 11,560 8.5 10.1.2 Sea 90 9.6 129 12,300 8.1 33.57		Mogne-	(Mg)				0.000		- 10-1	
Directore Tanp Oit Provided Selective Phil Sea 78 0.10 120.5 141,300 8.1 Sea 78 10.0 120.5 141,300 8.1 Sea 58 9.6 93 141,730 8.1 Sea 58 9.6 93 141,310 8.0 Sea 58 9.5 114 12,5000 7.8 Sea 87 10.0 133 11,560 8.5 Sea 90 9.6 129 12,300 8.1		alcium (Ca)								
Directories Tendros Securities Directories In 0F Directories Securities Directories Directories Directories Securities Sea 78 10.0 120.5 Jul, 300 Sea 58 9.6 93 Jul, 310 Sea 65 9.4 93 Jul, 310 Sea 78 9.5 Jul, 110 Second Sea 87 10.0 120.5 Jul, 310 Sea 87 9.5 Jul, 130 Second Sea 97 10.0 133 Jul, 300 Sea 97 9.5 Jul, 130 Second Sea 97 9.5 Jul, 100 Second Jul, 300 Sea 97 9.5 Jul, 120 Jul, 300 Second Jul, 300 Sea 97 9.5 Jul, 120 Jul, 300 Second Jul, 300 Sea 90 9.6 129 Jul, 300		H			8.l	8.1	8.0		8°~2	
Directoreal Tamp Directoreal Tamp <thdirectoreal tamp<="" th=""> <thdirectoreal t<="" tamp<="" td=""><td>Specific</td><td>inductance micromhos</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdirectoreal></thdirectoreal>	Specific	inductance micromhos								
Discriverent Trans Lin cts In 95 Sea 65 Sea 65 Sea 87 Sea 97 Sea 97		050	/a Sof					• • •		
Direnorge Team Sea 78 Sea 55 Sea 65 Sea 65 Sea 78 Sea 78		Dissol	Edd		10.0			9.5 L	10.01	5 • 0
		Temp n of			78	85	65	78	87	6
		Dischorge in cfs			Sea	Sea	Sea	Sea	Sea	e B
			1.0.1	Water Year 1962-1963	11-7-62 1505	1-9-63 0930	3-12-63 14,30	5-14-63 1115	7-10-63 1115	9-11-63 1115

	WATER
LE D-5	SURFACE
TABL	Ы
	ANALYSES

COLORADO RIVER DRAIDAGE PROVINCE X

WHITEWATER RIVER NEAR WHITEWATER (Station 68)

								_	
	Anolyzed by C			DWR	DWR	DWR	DWR	DWR	DWR
	Hordness bid - Coliform os CoCO ₃ 11y MPN/mi			2.3 DWR 1.3	1.3 DWR 0.6	62 240	6, 200 240, 000	62 62	36
1	- C			52	25	52	<25 21	52	52
	10°	UEAA		51	22	59	97	27	~ ~
		1 1		191	196	220	200	204	281
d T	cent sod -			17F	71	16	15	15	21
Totol	dis- solved solids	m qq ri					280		510
		Other constitutents					$A_3 = 0.00$ Pol_1 = 0.008	00*0	P0" = 0.00
	n Silica	(SiO _E)		01	01	01	18	01	27
nullion	- Boron			0.00	0.00	0.02	0*00	0.00	0.02
r miltion per miltion		(F)					<u>1.06</u>		0°00 0°00
ports per million equivolents per mill	ź	(NO ₃)				_	2.0 0.03		0°.0 0.03
d	Chio-	(CI)		<u>5</u>	5 0.14	6 0.17	7 0.20	4 0.11	0°0 0'11
c ø		(S 0 ₄)					<u>43</u> 0.89		4.2 0.87
stituent	Bicor -	(HCO ₃)		207 3.40	212 3.48	<u>233</u> 3.82	210 3.44	216 3.54	3. 60 3. 60
Mineral constituents		(CO ₃)		0*00	0*00	0.00	7.2	0*00	0°C
Min		с (X)					5.0 0.13		11. 12
	Sodium	(0 N)		11 0.01	<u>15</u> 0.65	<u>19</u> 0.83	<u>17</u> 0.74	17 0.74	<u>0.78</u>
	Magne-	(Mg)					<u>15</u> <u>1.23</u>		1.23 1.23
	Colcium	(Ca)					<u>56</u> 2.79		570 570
	Т			7.7 ⁸	8.1	7.6	8.0		0
1.9.000	conductance (micromhos	1 25°C)		430	1447	525	439	433	5111
0	ten (T	ppm % Sof 0		94.5	92	16	90	100	Ĩ
	Oissolved oxygen			8.4	9*8	8.2	8 . 6	9.0 100	111 2.01
	Terp To of			10	64	69	64	70	89
	Dischorgs Temp in cfs in OF			μ Est.	6 Est.	لم Est.	6 Est.	50 Est.	2 a 5
	Oats and time		Water Year 1962-1963	11-7-62 1505	1-9-63 1135	3-12-63 1710	5-14-43 0840	7-10-63	0-11-60

5	
à	
ŵ	
۲	
A	
-	

ANALYSES OF SURFACE WATER

COLORADO RIVER DRAINAGE FROVIDICE X WHITEWATER RIVER NEAR MECCA (Station 68b)

	Anolyzed by C			DWR	DWR	DWR	DWR	DWR	ЯМС
	Coli form ^b MPN/mi			60 2300	>7000	1300 6200	24,0,000 21,0,000	70,000 24,000	2300
Tur -	Hordness bid - Coliform ^b os CoCO ₃ hig MPN/mi Totol N C			1150	350	500	25	007	1000
	000°	U E Z A		351	361	308	340	340	28
	-cent -cent			621	636	586	630	602	54.8
				68	68	69	66	66	99
Totol	eolved	E DDE					24,50		2075
		Uther constituents					$A_{3} = 0.005P0_{4} = 0.35$ ABS = 0.28	PO _{l1} = 0.30 ABS = 0.22	۲۰ ⁰ - ۰.28
	Silico	(S:0g)		1.10			22		23
llion	Boron	(B)			<u>1.16</u>	1.02	1.0	0* 90	<u>1, 0</u>
per million		(F)					<u>3.4</u>		0.0
equivalents per million	, i Z	(N0 ₃)		_			<u>30</u> 0.148		27 0.111
equiv		(CI)		500 14.10	500 14.10	<u>13.25</u>	<u>465</u> 13.11	11-99	<u>385</u> 10+85
ta in		(SO4)					<u>919</u> 19.15		794, 16, 54
natituan	Bicar -	(HCO ₃)		329 <u>5.40</u>	<u>336</u> 5+50	339	<u>354</u> 5.80	320 5.24	<u>317</u> 5.20
Minerol constituents	Corbon-	(CO ₃)		0.00	0*00	0*00	0.00	0*00	0 0
Min	Potos-	ц Э́					11 0.36		0.31
	Sadium	(0 N)		<u>612</u> 26.62	621 27.01	600 26.10	25.01	532 23.11	22.19
	Mogne-	(⁶ W)					<u>51</u> [4.19		3-37
	Colcium Mogna-	(Co)					<u>169</u> 8.43		7 • 52 7
	H			7.9ª	8,1	7.8	8.2	8.6	8°.
Specific	conductance (micromhos	12267 10		3821	3860	3711	3597	3318	3012
	Dissolved C osygen (r	% S		99.2	61	96	121	126	52
	0.8	£ dd		8.4	9.2	0°6	9°8	10.0	9*6
	Temp n oF			76	90	68	8	82	de la companya de la comp
	Orschorgs Temp in cfs in oF			80 Est.	80 Est.	90 Est.	90 Est.	loO Est.	e 4 0
	ond time	P.S.q	Water Year 1962-1963	11-7-62 1535	1-9-63 1000	3-12-63 1600	5-14-63 1030	7-10-63 1300	0011-03

	WATER
LE D-6	SURFACE
TABL	ЧO
	ANALYSES

SANTA ANA DRAINAGE PROVINCE Y SANTA ANA RIVER NEAR MENTONE (Station 51b)

	10	T													
	Anolyzed by C			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
Hordness bid- Collform ^b os CoCO ₃ ¹¹ / ₁ MPN/ml Total N C ppm			6.2 2.3	1.3 0.6	0.6	< 0.6	23 13		2.3	13 240	2.3 6.2	2.3	62 13	2.9 23	
Pidr -			25	< 25	25	25	25	< 25	25	25	< 25	< 25	< 25	52	
N N N N N N N N N N N N N N N N N N N		U LL N LL N		0	0	0	0	0	0	0	0	0	0	0	0
	Per- cent sod - um			92	94	92	94	82	85	83	89	8	26	103	TOT
C a				25	26	26	28	32	31	31	30	30	27	27	25
Totol	solved solved	500							160		178	180	178	14T	130
	Other constituents								$PO_{11} = 0.00$ ABS = 0.01						Po ₄ = 0.1
	Silico	(2010)							없		15	17	16	10	18
lion	Boron	9		0.06	0.05	0.05	0.05	0.06	0.06	0.00	0.06	0.06	0.05	0.05	0.08
per milion	Fluo-								0.02		0.02	0.03	0.03	0.03	0.02
equivalents per mil	Ni-	(E 0 N)							11.0		2.5	3.1	<u>1.7</u> 0.03	0.00	0.01
eduivo	Chio-	(CI)		5 0.14	60.17	4 0.11	5.14	5.14	50.14	0.11	5.14	<u>6</u> 0.17	8 0.22	50.14	5 0.14
č	Sul ~								<u>16</u> 0.33		<u>15</u> 0.32	<u>14</u> 0.29	14 0.29	<u>15</u> 0.31	0.28 0.28
stituents	Bicor-	(HCO ₃)		<u>1.94</u>	2.00	<u>124</u> 2.04	2.06	2.00	<u>1.94</u>	<u>123</u> 2.02	127 2.08	<u>132</u> 2.16	<u>128</u> 2.10	<u>142</u> 2.32	2.12
Minerol constituents	Corbon-	(C 0 3)		0*00	0.00	0*00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.8 0.16
Mine	Potos-	(¥)							1.4 0.03		<u>1.4</u> 0.03	<u>1.8</u> 0.05	1.7 0.04	<u>1.4</u> 0.03	0.05
	E	(ON)		$\frac{14}{0.61}$	<u>15</u> 0.65	<u>15</u> 0.65	<u>17</u> 0.74	<u>18</u> 0.78	18	<u>17</u> 0.74	<u>18</u> 0.78	<u>19</u> 0.83	<u>17</u> 0.74	<u>18</u> 0.78	0.70
	Mogne-	(Mg)							5.45		4.6 0.38	<u>6.9</u> 0.57	7.8 0.64	7.4 0.61	0.57
	Colcium	(0)							25		28 1.40	$\frac{27}{1.35}$	<u>26</u> 1.30	29	<u>29</u> 1.45
	Н			1.9 ^a	a-0.7	8.0 ⁸	8.2 ⁸	7.8	8.0	8.0	7.8	7.6	7.8	8.4	8.5
Snarrfir	conductance (micromhos			243	198	253	247	248	250	246	258	264	259	260	263
		%Sot		-16	85.4	95	100	8	98	97	87	100	Tot	111	115
	Discolved oxygen	Edd		9.6	9.2	10.8	9.11	10.8	0.11	0.11	9.11	10.8	0.11	10.6	0.11
	Temp in oF			26	54	20	48	20	21	50	20	54	58	75	3
	Dischorge Temp in cfs in oF			27	26	26 est	26 est	8 est	8 est	8 est	8 est	22 est	15 est	15	о _́
Date ond time sompled P.S.T.		Water Year 1962-1963	10- 4-62 1020	11-14-62 1345	12- 3-62 1235	1- 9-63 1335	2- 6-63 1230	3- 7-63 1540	4- 4-63 1620	5-10-63 0730	6- 6-63 1000	7- 4-63 1315	8- 5-63 1330	9- 6-63 1300	

	1
9	i
	1
Ч	i
TABL	4
F	1
	(
	-1
	1

ANALYSES OF SURFACE WATER SANTA ANA DRAIMAGE PROVINCE X

SANTA ANA RIVER NEAR ARLINGTON (Station 51)

	Anoiyzed by ^C			DWR	DWR	DuR	DWR	DWR	THU	DWR	DWR	DWR	DWR	DWR	DWR
	bid - Califormb			62 23	12	62 6.2	≥700 ≥700	230 2400	230 62	24,00 620	230 62	62 130	230 62	230 62	530 530
L. L	+ h+				< 25	< 25	25	< 25	25	< 25	< 25	< 25	< 25	< 25	~ 25
	Hardness as CaCO ₃	U E Z G		123	109	118	129	8	96	91	102	711	129	113	E
		Tata!		384	371	373	385	347	360	360	356	387	366	321	383
	cent			29	31	29	59	32	32	32	33	30	30	35	30
Totol	dis- solved	n ppr			672	627	638	634	670	616	679	673	657	576	715
		Uther constituents		$PO_{14} = 0.02$ ABS = 0.03	$PO_{44} = \frac{0.02}{0.09}$	$MH_{1} = \frac{0}{0.04}$	$PO_{\rm ht} = \frac{0.13}{0.22}$	$PO_{l_{t}} = 0.0l_{t}$	$PO_{L} = 0.05$ ABS = 0.08	$PO_{14} = 0.3$ ABS = 0.12	$PO_{\rm h} = \frac{0.12}{0.06}$	$PO_{14} = \frac{0.1}{0.06}$	$PO_1 = 0.0$ AB3 = 0.06	$PO_{L} = \frac{0.09}{0.13}$	$ABS = \frac{0.09}{0.1}$
	Silica	(SiO _Z)				51		56	82	58	50	2	51	53	56
million	Boron			0.13	0.10	0.10		0.13	0.15	0.10	0.16	0.14	0.14	0.16	0.14
Ē		(F)			0.04	0.04	0.04	0.7 0.04	0.04	0.0 <u>3</u>	0.04 0.04	0.7 0.04	0.72	0.87	0.02
è	- Ž	(NO ₃)			27 0.44	21 0.34	29	28 0.45	27 0.44	30	24 0.39	27 0.44	23	32 0.52	0.64
equivalents	Chlo-	(CI)		2.76	2.76	94 2.65	94 2.65	98 2.76	2.79	97	<u>99</u> 2.79	2.82	2.82	2.79	2.82
Ē	Sul -	(S04)			2.32	2.35	124 2.59	<u>113</u> 2.36	118 247.5	2.36	<u>2.31</u>	2.35	2.35	2.46	2.43
tituents	Bicar-	(HCO ₃)		318	320	$\frac{311}{5.10}$	<u>312</u> 5.12	262	322 5.28	321 5.26	310 5.08	329	289 17.1	254 4.16	5.44 5.44
Mineral constituents	1	(C03)		0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
Mine	olas- C	ш() (У)			<u>4.9</u> 0.13	3.05	8.9	5.0	0.12	3.6	0.12	5.0	0.12	0.12	0,12
		(0 N)		73	00 1 1 00	3.05	76 3.31	3.31	81 3.52	79	3.57	<u>76</u> <u>3.31</u>	74 3.22	3.55	3.26
	Magne-	(6W)			23	<u>25</u> 2.07	<u>31</u> 2.56	22	24 1.96	27	25	4 <u>43</u> 3.55	28	29	2.02
	Calcium	(Ca)			<u>5.54</u>	<u>108</u>	103 5.14	<u>102</u>	<u>105</u>	<u>100</u> <u>1, 99</u>	101 5.04	84 4.19	100	81 1,.04	2.04
	Ĩ			7.9 ^a	7.7 ^a	7.7 ⁸	7.4 ⁸	8.1	7.8	8.2	8.2	8.0	7.6	8.2	8.2
aecific	conductonce (micromhos	13 - C2		1024	1104	1030	1079	1022	1054	1040	1022	TuitT	1009	1001	τηστ
	TD I	Sol		85	0.06	46	8	18	18	85	8	66	104	108	66
	Dieealve axygen	opm %		8.0	4.8	8.0	8.0	8.4	8.2	7.6	9.2	0.6	8.6	9.2	0.0
				8	99	99	3	3	62	70	64	65	78	76	69
	Discnorge Temp in cfs in ^{oF}			18.5	29	24	19	21	24	53	24	23	17	18.3	18
	Date and time	P S.T	Water Year 1962-1963	10- 4-62 0845	11- 7-62 1110	12- 3-62 1115	1-10-63 0940	2- 7-63 1030	3- 6-63 1600	4- 4-63 1530	5-10-63 1000	6- 6-63 1100	7- 3-63 1300	8- 5-63 1445	9-13-63 1140

	WATER
TABLE D-6	SURFACE
TAE	OF
	ANALYSES

			1 =
i		51e)	Ē
	×	SANTA ANA RIVER NEAR NORCO (Station 510	parts per mil
	THECE	(St	ā
	PROV	NORCO	
	ALIVAGE	NEAR	
Ì	SANTA ANA DRAINAGE PROVINCE Y	RIVER	
i.	NEA /	ANA	
	SAL	SANTA	

[pezo			6 2	~~~		œ	œ			~				
	Analyzed	5		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	
	Hardness Tur- as Caliform ^b as CaCO ₃ ¹ MPN/mi Dpm ppm			230	620 620	620 230	620 230	620 620	230 62	230 7000	2400 2400	620 230	7000 2400	62 13	
F	- i bid - i bi			< 25	52 >	, 25	52	< 52 <	< 25	< 25	< 25	< 25	< 25	< 25	
	dness aco.			76	97	97	26	64	19	77	TOT	109	111	0	
				350	1 351	356	352	324	332	319	345	368	374	103	
-	cent sod	sE		40	T41 6	140	140	75	42	474	017	39	38	27	
Toto	solved	o i o ci			759						242			TμT	
		Other canstituents		$PO_{I_{1}} = \frac{3.0}{1.0}$ ABS = $\frac{1.0}{1.0}$	$PO_{tt} = \frac{9.0}{1.05}$	$PO_{\rm L} = \frac{6 \cdot 8}{0 \cdot 05}$									P04 = 6.0
		(SiO ₂)			34						19			110	56
milion		B) (B)		0.50	0.39	0.34	0,46	0.39	0.59	0.68	0.44		0.39	0.05	0.49
Ē	Fluo-				1.1						0.05			0.03	0.04
parts per equivalents s	z	(NO3)			20						46 0.74			0.00	34
d Ninbe	Chin-	CI)		$\frac{131}{3.69}$	<u>128</u> <u>3.61</u>	<u>3.58</u>	<u>128</u> <u>3.61</u>	3.50	<u>3.58</u>	<u>123</u> 3.47	<u>128</u> <u>3.61</u>	<u>127</u> <u>3.58</u>	<u>3.47</u>	<u>5</u> 14	$\frac{131}{3.69}$
ē	- 115	fote (SO4)			<u>2.46</u>					_	$\frac{135}{2.81}$			<u>15</u> 0.31	2.70
stituents	Bicor -	banate (HCO ₃)		312 5.12	<u>310</u> 5.08	<u>316</u> 5.18	<u>311</u> 5.10	<u>317</u> 5.20	309	295 14.84	298 4.88	$\frac{316}{5.18}$	<u>321</u> 5.26	<u>142</u> 2.32	<u>5.34</u>
Mineral canstituents	or hon -	(CO3)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
Mine	oto-	E (X)			9.1 0.23						<u>8.2</u> 0.21				0.20
		LINDOC		106 14.61	105 4.57	109	109 4.74	109 4.74	111 4.83	$\frac{113}{14.92}$	110	109 4.74	107 14.65	113 4.92	109 14.74
	Mone-				27						26				256 2.13
		(Calcium (Ca)			97 1.84						96 14.79				100 14.99
	I			7.38	7.38	7.3 ⁸	7.3 ⁸	4.7	7.2	7.6	7.6	7.2	4°.L	8.2	8.0
	canductance	1 25°C)		1154 7.3 ⁸	9611	1174	0/11	1139	1111	1138	1174	1163	TITI	1156	1111
		/a Sat		148	20	53	43	ζŧ3	46	64	54	57	68	III	511
	Oissalved	0		4.4	4°.8	5.6	ή* ††	4.4	h.6	4.4	5	5.2	7.2	10.6	0.11
	de e			68	4	56	58	59	99	70	67	68	8	78	46
	Orscharge Temp	2		25 est.	30 est.	25 est.	25 est.	30 est.		26 est.	25 est.	25 est.	25 est.	20 est.	18 est.
			Water Year 1962-1963	10 -4-62 0815	11- 7-62 1030	12- 3-62 1050	1-10-63 0915	2- 7-63 0950	3- 6-63 1700	4~ 4-63 1400	5-10-63 1045	6- 6-63 1200	7- 3-63 1345	8- 5-63 1530	9-13-63 1115

	3
TABLE D-6	OF SUBEACE
	AI VCFC

ANALYSES OF SURFACE WATER SANTA ANA DRAINAGE PROVINCE Y

SANTA ANA RIVER BELOW FRADO DAM (Station 51a)

	Anolyzed by C	,		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DwR	DWR	ЯМД
				530	620 230	< 4.5 62	130	230	230 620	62 7000+	620 620	130 24:00	130 62	24,00 24,00	230
Ture	Hordness Tur- bid-Coliform ^b os CoCO ₃ ¹¹ MPN/mi Totol N.C ppm ppm			25	25	25	25	25		25	25	25	25	772	52
	Coco3 Dig			105	76	100	109	7L	181	40	66	IIO	128	108	106
Totol Per- dis- solved sod- solvds sod- solvds um Totol t ppm			_	367	353	359	363	339	341	334	359	372	1400	386	393
		5		34	36	36	34	36	38	39	37	36	35	37	31
		n ppn			969	647	242	629	684	654	724	TOT		691	744
		OTher Constituents		$PO_{\rm H} = \frac{1.30}{0.30}$	$PO_{\rm H} = \frac{3.6}{0.32}$	$\frac{\text{NH}_{l_{1}}}{\text{ABS}} = \frac{0}{0.35} \frac{\text{PO}_{l_{1}}}{0.35} = \frac{3.6}{0}$	$PO_{14} = \frac{3.2}{0.442}$	$PO_{\rm hi} = \frac{5.6}{0.26}$	$PO_{\rm h} = \frac{3.4}{0.148}$ ABS = 0.148	$PO_{L} = 2.8$ ABS =	$PO_{h} = \frac{h \cdot 0}{0.38}$ ABS = $\frac{0.38}{0.38}$	$PO_{\text{L}} = \frac{1.5}{0.3T}$		$PO_{1} = \frac{1.9}{0.36}$	$ABS = \frac{1.2}{0.29}$
	Silico	(20.2)			53	22	18	25	32	8	8	18		<u>[]</u>	27
ulion	Boron	(B)		0.29	0.27	0.31	0.34	0.31	0*10	0.47	0.35	0.37	0.33	0.40	0.38
per million	Fluo-	(F)			0.8 0.04	0.7	0.03	0.84	0.8	0.8 0.04	0.65	0.75		1.6	0.03
equivolents	N = -	(NO ₃)			20	24 0.39	24 0.39	<u>25</u> 0.41	<u>22</u> 0.35	<u>30</u> 0.48	21 0.34	19		21	0.31
equi	Chio-	(CI)		3.38	<u>3.27</u>	<u>3.27</u>	3.27	3.27	3.30	3.24	<u>3.44</u>	<u>3.38</u>	3.53	3.55	3.58
c s		(SO4)			<u>108</u>	<u>111</u>	<u>111</u> 2.31	<u>111</u>	2.42	<u>2.40</u>	<u>122</u> 2.55	120		2.67	2.64
stituent	Bicor-	(HCO3)		<u>320</u> 5.24	<u>316</u> 5.18	<u>316</u> 5.18	<u>310</u> 5.08	320	317	315	303 14.96	319	332	<u>339</u> 5.56	<u>350</u> 5.74
Mineral constituents	Corbon -	(CO3)		0.00	0*00	0.00	0.00	0.00	0.00	0.00	7.2 0.24	0*00	0.00	0.00	0.00
Min	Potos-	EX X			<u>6.4</u> 0.16	6.1 0.16	6.3 0.16	5.8	<u>6.0</u> 0.15	7.2 0.18	<u>5.5</u> 0.14	5.4 0.14		5.4	<u>5.8</u> 0.15
	Sodium			87 3.78	92 14.00	<u>91</u> 3.96	<u>91</u> 3.96	91 3.96	98 4.26	100	100 14.35	97 14.22	99 4.31	<u>104</u> 4.52	16 10 10
	Mogne-	(5W)			25 2.02	24 1.99	32	$\frac{23}{1.89}$	23 1.88	1.8	25 2.04	26		25	2.52
	Colcium	(Co)			101 5.04	<u>104</u> 5.19	95 1.74	98 14.89	99 14.91	97 14.84	<u>103</u> 5,14	106		113 5.64	<u>5-34</u>
	ï			7.7 ^a	7.6 ⁸	7.5 ⁸	7.6	7.6	7.4	7.8	7.6	t. T	7.6	8.0	8
Specific	(micromhos			1063	1087	1099	1120	1081	1100	1095	9011	6111	1115	1133	6411
		Sot		85	83.5	87	28	76	85	78	98	16	105	211	100
	DISSO	o/o udd		8.0	8.4	9.2	9.4	8.0	8.6	8.0	9.2	0.6	8.8	9.t	9.0
	Temp in oF	-		8	3	56	58	26	59	58	99	67	177	11	40
	Dischorge Temp Dissolved in cfs in of oxygen			2.4	38	011	20	24	36	23	52	11	25	20	5
Dote ond time sompled P.S.T		P S.T	Water Year 1962-1963	10+ 4-62 0720	11- 7-62 0925	12- 3-62 0945	1~10=63 0820	2- 7-63 0820	3- 7-63 0900	4- 4-63 1340	5-10-63 1120	6- 6-63	7- 3-63 1445	8- 5-63 1630	9-13-63 1040

TABLE D-6

ANALYSES OF SURFACE WATER SANTA ANA DEALINGE FROMFINGE Y

WARM CREEK NEAR COLTON (Station 50b)

	10				DWR		DWR	DWR	DWFA	DWR	DWR	E	DWR	DWR	e	64	es.
	Anolyzed				â		å		á	D	á	DWR	AG	MC	DWR	DWR	DWR
	Coliform ^b MPN/mi				700 700		23	2.3	53	700 50			53	62	6.2	7000	62 62
- bid					× 25	_	< 25	< 25	< 25	< 25	< 25	< 25	52	< 25	25	< 25	×25
	P C C C C C C C C C C C C C C C C C C C				52		58	26	18	0	0	28	⁴⁵	30	.+	17	39
					191		512	197	196	184	176	175	177	197	198	183	185
Per- cent cent ium					58		55	Ltt		5 24	53	58	21	55	20	53	27
Total	dia-	solide in por			622		663	503	530	602.	609	570	¹⁴ 90	605	608	524	550
	Other constituents			0 1 2			$PO_{\rm h} = \frac{28}{3.1}$	ABS = $\frac{h_* T}{9}$ WH ₄ = $\frac{9}{9}$	$\begin{array}{rcl} \mathrm{NH}_{L} &=& \frac{1.3}{5 \cdot 0}; & \mathrm{PO}_{L} &=& \frac{2.9}{2} \\ \mathrm{ABS} &=& \frac{5.0}{5 \cdot 0} \end{array}$	$\frac{\mathrm{NH}_{\mathrm{h}}}{\mathrm{ABS}} = \frac{52}{5.0}; \ \mathrm{PO}_{\mathrm{h}} = \frac{36}{2}$	$\begin{array}{rcl} \mathrm{NH}_{\mathrm{h}} &=& \mathrm{l} 7 ; & \mathrm{PO}_{\mathrm{h}} &=& \underline{26} \\ \mathrm{ABS} &=& \underline{\mu} \underline{, 9} \end{array}$	$\text{NH}_{\text{th}} = \frac{0.00}{22;} \text{ABS} = \frac{2.8}{2.8}$	$NH_{th} = \frac{1.0}{30}$ $PO_{th} = \frac{3.0}{3.0}$ ABS = 2.85	$\text{NH}_{\text{th}} = \frac{3 \cdot 2}{333}$ ABS = $\frac{3 \cdot 4}{3 \cdot 4}$	NH ₁ , = 2	$\mathrm{NH}_{\mathrm{l}_{\mathrm{t}}} = \overline{6.1}$	$PO_{t_{t}} = \frac{25}{2 \cdot 7}$
		(SiOg)			34		35	58	17	38	33	34	18		27	53	32
million		Boron (B)			0.57		0.64	0.34	0.44	0.62	0.74	0.57	0.52		0.64	0.66	0.64
10		(F)			1.3		1.3	0.9	0.8	0.05	0.09	1.9	0.10	2.5	1.3	2.00	0.06
equivolents	1	trote (NO ₃)			82 1.33		87 1.40	78	71	11.1	30 0.48	84 1.35	82 1.32	<u>76</u> 1.23	41 0.60	71	64 1.03
equiv	C PIO-	(CI)			<u>118</u> 3+33		<u>133</u> 3.75	<u>65</u> 1.83	84 2.37	<u>3.02</u>	<u>123</u> 3.47	<u>122</u> <u>3.44</u>	2.17	<u>118</u> 3.33	<u>108</u> 3.05	97 2.74	3.10
L	1	fote (SO ₄)			70 1.46		$\frac{71}{1.48}$	62 1.29	<u>63</u> 1.32	75	<u>66</u> 1.37	<u>58</u> 1.21	<u>54</u> 1.13	62 1.29	<u>66</u> 1.38	70 1.46	<u>76</u> 1.59
netituen	Beech	bonote (HCO _S)	170 2.78		<u>188</u> <u>3.08</u>	209	217 3.56	<u>229</u> 3.76	$\frac{231}{3.78}$	<u>179</u> 2.94	161 2.64	204 3.34	237 3.88	203	<u>178</u> 2.92		
Minerol constituents	Cochoo	(CO ₃)			0*00		0,00	0*00	0*00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00
Ŵ	a diama di	-10101 8:UM (X)			1 <u>3</u> 0.33		14 0.36	<u>13</u> 0.33	<u>14</u> 0.36	<u>15</u> 0.38	<u>14</u> 0.36	14 0.36	<u>13.4</u> 0.34	<u>12.4</u> 0.32	<u>14.4</u>	<u>14</u> 0.36	<u>13</u> 0.33
		Sodium (No)			122		120	<u>81</u> 3.52	98 4.26	<u>116</u> 5.05	<u>127</u> 5.52	125	91 3.96	<u>127</u> 5.52	113 4.92	112	110
	Mozne	(Mg)			20 1.63		$\frac{19}{1.60}$	<u>18</u> 1.44	22 1.82	<u>18</u> 1.48	14 1.17	1.50	24 1.99	1.59	$\frac{17}{1,37}$	<u>17</u> 1.36	20
		Colcium (Co)			44 2.19		53 2.64	2.50	42 2.10	44 2.20	4.7 2.35	40 2.00	<u>31</u> 1.55	47 2.35	2,59	2.30	41 2.05
	H			7.5 ⁸	a4.7	7.5 ^a	7.5 ⁸	8.6 ⁸	7.6 ^a	7.5	4.7	4.7	7.6	4.7	7.5	7.5	7.5
	conductance	at 25°C)			94 T		1050	849	944	980	1012	978	800	975	696	915	884
				84	118	τ <u>τ</u>	6	88	%	76		87	88	8	93	112	79
	Dissolved			7.0	9.6	6.2	7.5	8.6	8.2	7.8		7.3	7.3	2.7	4.7	7.6	6.3
	Temp	5		77	81	F	J2	99	65	67	69	22	48	72	82	4L	85
Dischorge Temp in cfs in oF		- C18		m	11	10	10		15 est							Composite	Variable
		sompled P.S.T.	Water Year 1962-1963	10- 2-62 0715	10- 2-62 1155	10- 2-62 1820	11- 7-62 1220	12-10-62 1215	1- 7-63 1230	2- 5-63 1230	3- 7-63	4- 4-63 1200	5- 2-63 1230	6- 6-63 1615	7- 2-63 1230	8- 8-63 c 1245 s	9-12-63 V 1600

[Analysed by C									-			-				
		Hordnass bid - Coliform ^b os CoCO ₃ 11 MPN/mi																
	Tur-	- piq 11																
		dnass cocos	U E N G															
	1	to de la																
	Totol	solved solids	u 00															
		Other constituents	1															
		Silice	120													-		
	u	Boron Si	ji ji															
n iti con	r mili	Fluo-B	E.															
parts per militan	equivalents per milion	Ni - F	(° 0 N)															
a a	equiva	Chio-														_		
	ē	Sul -	(50,)															
	stituents	Bicor -	(HCO ₃)														_	
	Minerol constituents	Carbon-	(CO ₃)															
	Min	Potos-	(¥)															
		Sodium	(0 N)															
		-eugow	(bw)															
		Calcium	1001															
		Ĩ																
	Spacific	conductance pH (micramhos pH																
		Dissolved osygen ppm %Sof																
-		du u																
F		Dischorgs Temp in cfs in of			Dry No flow	Dry No flow	Dry No flow	Dry No flow	Dry No flow	Dry No flow	Dry No flow	Dry No flow	Dry No flow	Dry No flow	Dry No flow	Dry No flow		
		Date and time sompled	P S.T.	Water Year 1962-1963	10-2-62 1000	11-7-62 1000 N	12-3-62 1215 N	1-9-63 1430	2-63	3-63	4-63 N	5-10-63 0900	6-6-63 0830 N	7-3-63 N	8-5-63 1430	9-6-63 1500 N		

TABLE D-6 ANALYSES OF SURFACE WATER SANTA ANA DIVATINGE PROVINCE Y

VARM CREEK NEAR SAN BERNARDING (Station 50c)

_															
		Anolyzed by C					DWR	DWR	DWR					DWR	DWR
	4	Hardness bid - Coliform ^D a6 CaCO ₅ 11 MPN/mi Tatol N C PPM PPM					24,000 24,000	70000+ 70000+	2300 6200					70000 6200	620
ŀ		mdd - C					1500		52					72	52
		n n UE Sou Z Z Z				-	52	0	0					166	0
		Hardness as CaCOs Tatal N C ppm ppm					161	378	257					500	187
	Par-	cent sod -					26	35						31	9 M
	Totol Per- dis- solved sod- soluds ium						312	772						689	#32
		Other constituents													
		Silica (SiO ₂)					01		5	_				58	53
	11GU	Boron S (B) (5					0.28		0.31	0.30				0.27	0.26
million	per milion	Fluo- ride (F)					1.0		0.61 0.03					<u>1.3</u> 0.07	0.5
ports per million	equivolents	NI - 1rate (NO ₃)					32 0.52		1.8 0.03					0.00	0.00
ā	e dury	Chio- ride (Ci)					<u>34</u> 0.96		<u>96</u> 2.71	<u>67</u> 1.89				<u>62</u> 1.75	4 <u>1</u> 1.16
	ci s	Sul - fote (SO ₄)					<u>63</u> 1.32		54 1.12					297 6.18	<u>39</u> 0.81
	efituent:	Bicar- banote (HCO ₃)					<u>133</u> 2.18		<u>561</u>	325				407 6.68	277 4.54
	Minerol constituents	Corbon- ote (CO ₃)					0*00		0.00	0.00				0.00	00.0
	Min	Potas- sium (K)					24 0.61		26 0.67					18 0.46	0.51
		Sodium (No)					<u>31</u> 1.35		111 4.83					<u>107</u>	2.4t
		Mogne- sum (Mg)					10 0.87		<u>39</u> 3.17					43	<u>15</u> 1.20
		Colcium (Co)					47		88 4.39	3.35				129 6.44	<u>51</u> 2.54
							7.6 ^a		4.7	5.7				8.2	4.8
	Snartic	conductance (micromhos of 25°C)					531		1265	1939				1302	642
							54		45	55				12	ŝ
		Dissolved oxygen ppm 0/oSo					6.0		4°.6	5*0				5.8	9**
F	_	Te ci					52		58	69				8	4
		Dischorge Temp in cfs in oF		Dry No flow	Dry No flow	Dry No flow	15 est	Dry No flow	Pond	5 est	Dry No flow	Dry No flow	Dry No flow	.5 est	Ponded
		Oote and time sompled P.S.T	Water Year 1962-1963	10- 4-62 I	11- 7-62 I	12- 3-62 I	1-10-63 0755	2- 7-63 I	3- 7-63 1000	4- 4-63 1240	5- 9-63 I	6- 6-63 I	7- 3-63 I	8- 5-63	9-13-63
-	-										_				

TABLE D-6

		y C											
-	4	Ardiness bid - Coliform Analyzed as CaCOS In ppm Total N C ppm ppm											
		MPN/											
-	Tur-	A U U											-
		Hordness as CaCO _S Totol N C Ppm ppm											
	Per-	sod									_		
	Totol	solved sod - solved sod - in ppm -um											
		Other constituents						-					
	+	Silic d (SiO ₂)									-		
	IIIOn	Baron Silica (B) (SiO ₂)											
m-lloor	Der m	Fluo- ride (F)							_				
ports per million	equivalents per million	Ni - trote (NO ₃)											
Ď	equivo	Chio- ride (Ci)											
5	-	Sul - fote (S 04)											
1.1 uents													
Mineral constituents in		Patas- Carbon- Bicar- sium (CO ₃) (HCO ₅)											
Mine	-	atas- C sium (K)									_		
	ŀ	odium (N a)											-
		(Calcium Magns- S (Ca) (Mg)							•				
		Co) Co											
\vdash		H				_							
	Specific	(micromhas PH									_		
		Dissalved Darygen Dom 0/oSat											
				Dry lake	Dry lake	Dry lake	Dry lake	Dry lake	Dry lake	Dry lake	Dry lake	Dry lake	
		and time sampled P S _i T	Water Year 1962-1963	11- 8-62 1515	1- 7-63 1600	263	363	463	5-13-63	663	7- 8-63 1630	9-17-63 1500	

ANALYSES OF SURFACE WATER

SANTA ANA DRAINAGE PROVINCE Y

ANALYSES OF SURFACE WATER

SAN DIEGO DRAINAGE PROVINCE

SANTA MARGARITA RIVER NEAR FALLEROOK (Station 51c)

	Andiyzed by C			DWR	DWR	DWR	DWR	AWR	DWB
	Hardness bid - Caitorm ^B A as CaCO _S ity MPN/mi			13	700 10.8	620 23	62 62	6.2 240	5°20
	N Co	-		,25	25 27	(25	25	(25	
-	CO _S	D D D D D D D D D D D D D D D D D D D		50	65	2	<u>9</u>	*	Ϋ́Α
	os Co	Totol N.C. ppm ppm		340	329	340	319	348	38.5
Par.	sod -			39	447	94	94	45	9 4
Total	solved sod - solids	in ppm		765			733		78 2
	Other constituents	1		$PO_{l_1} = \underbrace{1, b}$			$PO_{\rm b} = 0.28$ ABS = 0.08		P0 4 = <u>0.6</u>
	Silico	(SiO ₂)		34			'fl		R
lion	Boron	<u>(</u>)		0.21	0.16	0.21	0.23	0.24	0.0
multion ter mul	Flua-	E)	angelikken, k ongeno	0.8 0.04			0.0		0.0 0.0
ports per million equivalants per million	<u> </u>	(NO ₅)		<u>5.6</u> 0.09			0.02		0.0 010
equival		(CI)		3.95	3.69	152 4.29	<u>135</u> 3.81	<u>143</u> 4.03	1, 15
Ę	Sul -	(SO4)		<u>2.42</u>			<u>106</u> 2.21		4 <u>tr</u> 3638
stituents	Bicor-	(HCO ₃)		<u>354</u> 5+80	322 5.28	329	<u>306</u> 5.02	381 6.24	5 - 70
Mineral constituents	arbon -	(CO ₃)		0.00	0.00	0*00	<u>16</u> 0.56	0*00	00
Mine	Potos- C	uns (X)		11.3 0.11			3.2 0.08		6.9 71.0
	muibo	(D N)		<u>5.31</u>	<u>118</u> 5.13	$\frac{1.34}{5.83}$	128	<u>130</u> 5.00	5.57
	Magne-	(Co) (Mg)		31 2.51			2.29		83 .31 .31
	alcium	(Ca)		86			82		48 4 19
-	H			7.73	8.0	7.8	8.0	4*£	સ
Soacific	conductance (micramhas	01 22 CZ			39TT	1250	25TT	64TT	7811
				5.67	66	62	£	105	·δ.
	Dissol	ppm %Sot		6.0	10.8	6.4 6	0.6	4.6	0. 0.
	Te a Dig			ŷ	20	22	66	20	8
	Discrorge Temp Dissolved in cfs in oF oxygen			est.	est.	est.	est.	est	
	Date ond time		Water Year 1902-1963	11- 8-63 1415	1 - 7-63 1700	3 -11-63 1120	5 -13-63 1700	7 - 8-ó3 1515	9 - 17 - 63 1345

Total Per-total Per-Other constituente Flue- Baran Silica ride (B) (SiOg) equivolents per million ports per million SAN LUIS REY RIVLE NEAR PALA (Station 62) Ni -trote (NO_S) Chio -ride (CI) Sul -fote (SO₄) Mineral constituents in Bicar -bonate (HCO_S) Corban - (CO3) Colcum Moyne Sodium Potae-(Co) sium (No) (K) 0.1500008 18mp Dissolved 50851.15 10.1518 in 95 01100 (m.coductorus) 000 0.501 01 2505) Dry No flow Dry No flow No flow No flow No flow Dry No flow Water Year 1962-1963 0ote and time sampled PST 11-3-62 1345

ANALYSES OF SURFACE WATER TABLE D-7

SAN DIEGO DRAINAGE PHOVINCE

ANALYSES OF SURFACE WATER SAN DIDGO DRAINAGE PROVINCE Z

ESCONDIDO CREEK NEAR HARMONY GROVE (Station 03)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0	-											
$ \frac{1}{2} \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		Anoly1 by c		DWR	DWR	DWR	DWR	DWR	DWR					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		MPN/mi		230 620	23	620 620	620 130	230	7000					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		- pid -	1	25		110	200	25	96					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		N C Ou		189	237	190	151	246	144					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Hordr os Co Totoi ppm		11	392	390	366	396	369					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, red	sod -		22	23	55	50	58	57					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Totai	solved solved solos				1242	1130		1224					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Other constituents		$PO_{14} = \frac{39 \cdot 0}{3 \cdot 3}$	8 8	46 B	$PO_{\rm LI} = \frac{5.3}{1.1}$ ABS = $\frac{1}{1.1}$	н п	10 H 10					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(SiO2)											_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-illion	Boror (B)			0.78		0.67	0.69						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	per m	Fluo- ride (F)				0.68 0.04	0.8 0.04		0.03					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ni- trote (NO ₃)				30 0.118	<u>3.0</u>		0*00					
Outcom Distriction Distriction Distriction Advance Contribution Advance Contribution Advance Contribution Contris Contribution	d	Chio- ride (CI)		<u>340</u> 9.59	<u>282</u> 7.95	<u>335</u> 9+45	277 7.81	296 8.35	<u>353</u> 9+95					
Oscinaria Imp In cis Oscinaria Imp In cis Oscinaria Monor						301 6+27	298 6.20		257					
Oiscrearies Temp Discretion Discretion Specific constraints	stituent	Bicor- bonote (HCO ₃)		2.71 1.444	<u>189</u> <u>3.10</u>	21.11 1-00	262	$\frac{183}{3*00}$	275 4.50					
Oiscrearies Temp Discretion Discretion Specific constraints	eral cor	Corbon- ote (CO3)		0*00	0*00	0*00	0*00	0*00	0*00					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Min	Potos- sium (K)				<u>16</u>	<u>15.6</u> 0.40		<u>0.11</u>					
Oiscrearies Temp Ossertied Specific Productional Moyne air 2 1 0 1 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1<				253 11.00	241 10.48	259 11.27	21µ1 10.61	255 11.09	260					
Orschmane Time Dissolved Specific Concuration air cits no 0.9550104 Consolved Concuration air cits no 0.955010 m Concuration 2 72 Li-Li 50 2009 7.28 Est. 51 5.56 52 198L 7.28 Est. 66 6.0 61 1875 7.41 Est. 72 5.48 59 2087 7.4 Est. 7.40 81 1875 7.41 3.74 Est. 7.4 7.0 81 1.1.1 2 Est. 7.4 7.4 7.2 3.74 Est. 7.4 7.4 7.2 3.74 Est. 7.4 7.4 7.4 3.74		Mogne- sum (Mg)				14.06	39 3.18		<u>38</u> <u>3. 114</u>					
Offerting Tenne Offerting Specific at 0		(Co)				3.74	33 1.11		1.21					
Orscharge d b Temp in dis in dis sayon pom bert. Desolved sayon pom pom sayon pom sayon pom sayon pom sayon pom sayon pom sayon pom sayon pom sayon pom sayon pom sayon sayon pom say pom say pom say p		D H d		7.28	7.2 ^b			7.2		-	 -	-	-	
Discharde Temp Desconde d nin cfs nin cfs nin cfs nin cfs nin cfs nin cfs 900 2 72 LuLu 5/5 5/2 Est. 66 6.0 6 6 Est. 72 7.4 7.0 8 2 74 7.0 8 5 Est. 72 5.8 5 8 5 2 8 7 7.0 8 8 3 72 5.8 6 6 6 8	Specific	onductonc nicromhos												
ar Orschorge Tomp de Orschorge Tomp Est. 1 62 Est. 66 Est. 72 Est. 72 Est. 72 Est. 72 Est. 72	-	o Sof		50	52	59	642	81	66		 			_
Discreting Temp d Discreting Temp Est. 152 Est. 62 Est. 66 Est. 72 Est. 72 Est. 72 Est. 72 Est. 72		Dissolv oxyge opm '9'									 			
• P	-	emp a de	-								 			-
		Discharge 1 in cfs II												
10 12 12 17 14 15	-	0016 ond time sompled P S T	Water Year 1902-63	11-8-62 1255	103	3-11-63 1305	5-13-63 1330	7=8-63 1400	9-17-63 1150					

All DENDERTOR REPORT BELOR AND PRODUCT WILTEY (Start for 04) Sector Sector Construction Construc	
All DTEUTTO FIVER BELOF GAR PASQUAL VALLEY (Stacton GA) Coloring Magne Sodum Works in Annotation A	
All DTEUTTO FIVER BELOF GAR PASQUAL VALLEY (Stacton GA) Coloring Magne Sodum Works in Annotation A	
All DTEUTTO FIVER BELOF GAR PASQUAL VALLEY (Stacton GA) Coloring Magne Sodum Works in Annotation A	
All DTEUTTO FIVER BELOF GAR PASQUAL VALLEY (Stacton GA) Coloring Magne Sodum Works in Annotation A	
AND DEGUTION REVER BELOH SAM PAGUAL WALEY (Station GA) Anneol Contraction in <u>contractions per million</u> Colcum Woom Sodum Point Contraction in <u>contractions per million</u> (co) [kg0] [kg0] [c0] [c0] [c0] [c0] [c0] [c0] [c0] [c	
AND DEGUTION REVER BELOH SAM PAGUAL WALEY (Station GA) Anneol Contraction in <u>contractions per million</u> Colcum Woom Sodum Point Contraction in <u>contractions per million</u> (co) [kg0] [kg0] [c0] [c0] [c0] [c0] [c0] [c0] [c0] [c	
Sal DIROUTIO RIVER BELOH SAI PASUAL VALEY (Stetion GA)	
AN DIEGUTO RIVER BELOH SAR PASQUAL WALTAY (Station di Colcum Woons Sodum Poise Constituanta in <u>equivalents per milion</u> Colcum Woons (Sodum Poise Constituanta in <u>equivalents per milion</u> auto (Co) (HOQ) (So) (So) (FO) (FO) (FO) (FO) (K) (FO) (FO) (FO) (FO) (FO) (FO) (FO) (FO	
AN DIROUTO RIVER BELOH SAN PASUAL VALEN (Stetton GA Colcum Woone Sodam Pero Constituatia in aquicitatia per militon (co) (wo) (so) (so) (so) (so) (so) (so) (so) (s	
Colcum Mogne Sodum (Co) (wa) (wa)	
Colcum Mogne	
(Coleum (Co)	
a a c r 11.c a a c r 11.c c r 20.a c 12 c 1 - 1 - 2 - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	
a a seri re doctromos recomos 1 - 1 - 2 - 0 - 0	
v je	
bisotvan bisotvan ppm ppm ppm ppm ppm ppm ppm pp	
District of the first of the fi	
Dote and time annotation of time annotation and time annotation and time annotation and time and tit and time and time a	

SAN DIEGO DRAINAGE PROVINCE 2

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
stituent In part part million Part part million Bencer Sui- Nu-	
atiluenta in Bincer Bincer (HCO3) Date per Suit Date per Suit Million (Sig) Million (Bincer (RO3) Million (Sig)	
attluent n part primition part mittion Total Bincar Sui- Cho- Nn- Fuga Nn- Pion Bincar Sui- Cho- Nn- Fuga Bincar Pion Bincar Sui- Cho- Nn- Fuga Bincar Bincar Pion Bincar Sui- Cho- Nn- Fuga Bincar Bincar Dian Record Sui- Cho- Nn- Fuga Bincar Dian Dian Record Sui- Cho- Nn- Fuga Bincar Dian Dian <td< td=""><td></td></td<>	
It luant Data per million equivalents perta per million Bonce Sal Cho Nu<-/th> Flue Bonce Bonce Sal Cho Nu<-/td> Flue Bonce Col Bonce Sal Cho Nu<-/td> Flue Bonce Sal Other construents Bonce Col Na Flue Bonce Bonce Sal Other construents Bonce Col Na Flue Bonce Sal Disc Dis Disc <td></td>	
Ittuents Date per million attuents \mathbf{r}_{11} Bender Sul- Cho- Sul- Cho- Nu- Filo Nu- Fluo Bender Sul- Cho- Sul- Cho- Nu- Filo Nu- Fluo Bender Sul- Cho- Sul- Cho- Nu- Filo Nu- Fluo Bender Sul- Cho- Sul- Cho- Nu- Filo Sul- Cho- Bunds Sul- Sul- Sul- Sul- Sul- Bunds Sul- Sul- Filo Sul- Sul-	
Itluent Darts per million atiluents i equivalents per million Bender Sul- Cho- Nu- Flue- Bord Bender Sul- Cho- Nu- Flue- Bord Bender Sul- Cho- Nu- Flue- Bord Bender Sul- Cho- Nu- Flue- Bord Bord Bender Col,1 Tob- Bord Cho- Nu- Flue- Bord	
Data Data per million atituent in $equivelents$ per million Binder Sul- Cho- Nu- Fluo- Boranicon Binder Sul- Cho- Nu- Fluo- Boranicon Binder Sul- Cho- Nu- Fluo- Boranicon Side Side Side Side Side O.Ch T-12 Side Side Side Side O.Ch	
parts parts part millio etituents in equivalents part millio Bindor Suit Chai Nin- Fund- Bindor Suit Suit Cua Cua Bindor Suit Suit Cua Cua Bindor Suit Suit Cua Cua Bindor Suit Cua Cua Cua Bindor Suit Cua Cua Cua Aug Suit Cua Cua Cua Bindor Suit Cua Cua Cua Aug Suit Cua Cua <t< td=""><td></td></t<>	
nittuenta n petts parte petts	
affituenta n aqui benera- benera- percosi aqui sui sui sui sui sui sui sui sui sui s	
1111-0111 1334 1	
nestivents bonne (HCO3) 334 334 534 603 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
c l	
Minima con Carbon Ca	
Munture 1.12 1.12 1.13 1.13 0.13 0.13 0.17 0.20	
Soduum 15-44 13-44 13-44 15-70 13-35 13-35 13-35	
Magne. (Mg) 70 7.78 64.03 61.03 7.78 7.78 7.78	
Calcum (ca) 1.74 5.39 5.54 7.83 7.83	
H4 6.1.	
Specific conductoring (microsoft) 1 29954 2954 2956 3272 3272	
103 103 103 103 103 103	
0.110.0 9.0 9.0	
68 66 65 77 73	
Discrarge Tamp in Cf3 in Cf3 in Cf2 Pond Pond Bolice Pond Bolice Pond Bolice Pond Bolice Pond Bolice Pond Bolice Pond Bolice Pond Bolice Pond Bolice Pond Pond Pond Pond Pond Pond Pond Pond	
Dote Opdime semple semple PS,f PS,f <td></td>	

ANALYSES OF SURFACE WATER

SAN DIEGO DRAINAGE PROVINCE . SAN DIEGO RIVER AT ULD MISSION DAM (Station 65)

Torial Part torial Control Part torial Control Part torial Part to Other constituents Boran Silica (B) (SiO₂) equivalents per million ports per million Fluo-ride (F) Ni-trate (NO₃) Chia-ride (CI) Sul -fote (SO₄) Mineral constituents in Bicar-bonate (HCO₃) Magne Sadium Potas- Corbon-sium (No) (K) (CO₃) (Calcium (Ca) Hq Dischorge Temp Discritic Dischorge Temp Discritic Discritis in 0F Discritic Discritis in 0F Discritic Discritis in 0F Discritic 7-1-93 This statich dropped as of Dry No flow Dry No flow Dry No flow Dry No flow Water Year 1962-1903 Date and time sampled P.S.T 5-13-03 1200

ANALYSES OF SURFACE WATER TABLE D-7

SAN DIEGO DRAINAGE PROVINCE

FOREJTER CREEK AT MISSION GORGE ROAD (Station 65a)

ANALISES OF SURFACE WA

SAN DIEGU RIVER NEAR MISSION CORGE ROAD (Station 65c)

	Anciyzed by C	DWR	DWR		DWR	DWR	DWR			
4	Hordness bid - Coliform os CoCO ₃ ity NPN/mi Totol N.C Ppm ppm	5.6 62	7000 2400		0007	230	1300 24,00			
Tur-	- piq A	(25	522			S5	32			
	Hordness os CoCO _S Totol N C ppm ppm	157	73		140	110	207			
		109	377		378	1400	484			
e L	sod -	2	62		29	53	22	_		
Totol	spived solids mpgm	1275			1193	1235	5111		 	
	Other constituents	$\begin{array}{l} \text{NH}_{\text{L}} = \frac{22}{30} \\ \text{POL} = \frac{30}{1 \times 3} \end{array}$	$PO_{L_1} = \frac{16}{5.6}$				POL = 23 ABS = 0.4			
	Silico (SiO ₂)	39			17	위	R			
lion	Boron (B)	0.74	1.20		0.74	0.78	0.64			
per milion	Fluo- ride (F)	0.06			<u>1.7</u> 0.09	<u>•67</u>	0•3 0•02			
2	Ni - trote (NO ₃)	<u>66</u> 1.07			1.6 0.02	6.0 0.10	50 0.81			
equivolents	Chlo- ride (CI)	<u>324</u> 9.13	290 8.18		304 8.57	<u>333</u> 9+39	<u>376</u> 10.60	 	 	
U,	Sul - fote (SO4)	<u>333</u> 6,94	- Cope		280 <u>5.81</u>	317	280 5- 811	 		
ituents	Bicor- bondte (HCO ₃)	307 5. 04	371 6.08		<u>6.60</u>	354	338	 		
Mineral constituents	Corbon - B ote (CO ₃) (F	000	0*00		0000	000	0000	 	 	
Minero			00			0°120	0.38	 	 	 _
		01 0.16 0.16	23		51 <u>0.111</u>			 	 	
	Sodium (No)	$\frac{253}{11.01}$	288 12.53		267 11.61	<u>261</u> 11.35	291 12.66		 	 _
	(6M) muis	147 3.84			3.117	51.	<u>53</u> 139			
	Colcium Mogne- (Ca) (Mg)	87 14.34			82 4.09	77 3.84	<u>106</u>			
	I	7.3 ^a	7. ^{4b}		7.4	7.4	7.3			
Space for	conductonce (micromhos o1 25°C)	2157	2242		2129	2154	2209			
	ved (T	02	63		99	78	22		 	
	Dissolved oxygen ppm %Sot	ي. م	6.0		80° 80	6.6	0°2	 		
	Temp in of	02	64		72	76	69			
	Discharge Temp in cfs in AF	6 Est.	1.7	Dry no flow	т с с	Est.	Bin Bin C			
	Opte ond time sompled P.S.T	Water Year 1962-1963 11-8-62 1005	1-8-63 1140	3= -63	5=14=63 1900	7-7-63 1200	9-17-63 1030			
L								 	 	

SAN DIEGO DRAINAGE PROVINCE 7

SPRING VALLEY CREEK NEAR LA PRESSA (Station 65b)

	3									
	Analyzed by C		DWR	DWR		DWR	DWR	DWR	tha a	
	Hardness bid - Coliform ^b as CaCO ₃ 117 MPN/ml Totol N C Ppm ppm		230	6.2		+ 302 4004	, 400	4.5- 4.5-	7, 000+ 7, 000+	
-	1 bound		100	75		180	110 2,	52	52	
	SCO NG		230	136		129	153	237	× E 1122	
	1 1		570	48.1		445	563	619	5302	
ġ	cent sod		20	99		64	54	54	20	
Tatal	solved solved in ppm		1690				1839	1875	3450	
			30				20	20 7.5	1.00	
	constit		$PO_{4} = \frac{3}{2}$				11 11	11 11	1.1	
	Other constituents		PO				PO4	PO ₄ AB3	P Ot B S AB S	
	Silico (SiO _E)		<u>48</u>				151		<i>а</i> Т	
lion	5		0.85	0.52		i.l	C.71		1.20	
101110	Fluo- ride (F)		0.6 0.03				1.00 0.00	.70 0.04	0.02	
equivalents per million	NI - trote (NO ₃)		0*00				1.9 0.03	1.2	0.16 7.15	
equival	Chlo- ride (CI)		504 14.21	625 17.63		400 11.23	557 15.71	5 30 16. clt	1117.3	
Ē	Sul - fats (SO ₄)		378 7.88				104 8.41	410 8.67	17.11	
Mineral constituents	Bicar - banate (HCO ₃)		415 6.80	429 7.04		386 6.32	500 8.20	406 7.04	N. 34 N. 34	
ol cons	Carbon - E (CO ₃)		0.00	0.00		0.00	00.00	0,000	0.0	
Miner	Potas- Co sum (K)		17. 0.44	010			10 0.41	16 0.41	00 <u>00</u>	
	Sodium (No)		334 1 14.53 0	<u>432</u> 13.79		<u>370</u> 16.09	17.97 0 17.97	425 1 18.49 0	20-74-7	
	00 S E E E (5		79 33 5+76 11			10 M	68 4	71 11	28.180 28.180 28.180	
	BOW W									
	Calcium Magne- (Co) (Mg)		113 5.64				$\frac{113}{5*64}$	131 5.54	580 29.24	
	H		-	7.4p		12	7.7	-	<i></i>	
o a cupic	(micrambas		2904	340C		2043	3214	3211	13000	
			113	59		70	96	8		
	Dissolved oxygen ppm 9/oSat		9.6	5.4		0°°0	8.4	đ.0		
	Te of		10	68		<u>6</u> 6	15	22	Q.	
	Dracharge Temp Dreadved in cfs in of ppm %Sa		3 est.	-	Dry No flow	m	~	est.	est.	
	Dote and time P.S.T	Water Year 1962-1903	11-8-62 1105	1-8-63 1: 30	2-63	3 3 1600	4 - 1 3-03 1 35	1.130	7-03 *	

	Tur-	Hordness bid - Coliform Analyzed os CoCO ₃ 11y MPN/mt by C Totol N C Ppm ppm							
	Tur-	ĒĒ							
	Tur -	MPN							
		n ity ity mgg n							
		Hordness os CoCO ₃ Totol N C PPm PPm							
						_			
	Per	solved sod - solids sod - in ppm -um							
	101	solvo solio n pi							
		Other constituents							
		Silico (SiO ₂)							
	llion	Boron Silico (B) (SiO ₂)							
millior	per mi	Fluo- ride (F)							
The source rights at intervent and boundary ()earlon contained to boundary ()earlon	equivalents per miltion	Ni- trote (NO ₃)							
d and	equiv	Chio- ride (CI)							
THURDE	e s	Sul - fote (SO ₄)							
ALC: No.	nstituent	Bicar- bonote (HCO ₃)							
1 - 1 T I T I T I I	Mineral constituents in	Potos- Corbon - B sium 01e t (K) (CO ₃) ((
	Wit	Patos- sium (K)							
		(N 0)							
		Mogne- sum (Mg)							
		Colcium Mogne- (Co) Mogne- (Mg)							
	Specific	conductance (micromhos pH ot 25°C)							
		Diesolved C oxygen (r ppm 9/aSot							
-									
		Dischorgs Temp in cfs in oF		Dry No flow	Dry No flow	Dry No flow	Dry No flow	Dry No flow	
		Dote Di- and time P.S.T.	Water Year 1962-1903	11-8-62 N	1-8-03 0955 N	3-63 N	7-3-63 1300 N	9-16-63 1300	

IABLE D-0

RADIOASSAYS OF SURFACE WATER

CENTRAL COASTAL DRAINAGE PROVINCE (T)

Dissolved Beta Solid Beta		8.4 <u>+</u> 6.2 4.5 <u>+</u> 6.2	$\begin{array}{c} 6.0 \pm 6.3 \\ 9.1 \pm 6.2 \\ 3.7 \pm 6.1 \\ \end{array}$	6.0 <u>+</u> 6.3 0.0 <u>+</u> 6.2	
Micro-micro curies per liter Solid Alpha Dissolved Be		0.0 + 0.2	0.0 + 0.3	0.0 + 0.3	
Dissolved Alpha		0.2 <u>+</u> 0.3 Dry -no report	0.3 + 0.4 0.1 <u>+</u> 0.3	0.1 ± 0.4 Dry -no report	
Date	<u>1963</u>	9-7 9- 3 9	9-1 4-0	9-9-0 0.0	
No.		44a	qtth	45a	
Station	Water Year 1962-1963	Cuyeme River neer Garey	Santa Ynez River at Cachuma Reservoir	Santa Ynez River near Solvang	

TABLE D-9 RADIOASSAYS OF SURFACE WATER

LOS ANGELES DRAINAGE PROVINCE (U)

	Sto.			Micro-micro c	curies per liter	
STOTION	No.	Date	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
Water Year 1962-1963		1963				
Matilija Creek above Matilija Dam	45b	5- 7 9- 4	0.0 + 0.3 0.1 <u>+</u> 0.4	0°0 + 0°3 0°0 + 0°3	0.0 + 6.3 6.1 + 6.2	$1_{*}1 + 6_{*}3$ $2_{*}5 + 6_{*}1$
Santa Clara River at Los Angeles- Ventura County Line	46	5- 8 9- 4	0.1 + 0.3 0.0 <u>+</u> 0.2	0.0 + 0.3 	2.4 + 6.5 13.8 <u>+</u> 6.1	0.0 + 6.3 6.6 + 6.1
Santa Clara River near Santa Paula	46a	5- 7 9- 4	0.1 + 0.3 0.0 + 0.4	0.4 + 0.4 1.0 \pm 0.6	9.2 + 6.3 7.7 <u>+</u> 6.2	0.0 + 6.1 8.2 + 6.2
Piru Creek near Piru	46c	5- 7 9- 4	0.4 + 0.5 0.7 + 0.5	0.0 + 0.4 2.8 + 0.8	9.9 + 6.2 0.0 + 6.3	4.4 + 6.1 0.0 + 6.2
Sespe Creek near Fillmore	46d	5- 7 9- 4	0.2 + 0.4 0.5 <u>+</u> 0.5	0.8 + 0.5 0.1 + 0.5	2.0 + 6.1 7.5 <u>+</u> 6.2	7.4 + 6.2 1.4 <u>+</u> 6.1
Santa Paula Creek near Santa Paula	46e	5- 7 9- 4	0.0 + 0.4 0.0 <u>+</u> 0.3	0.0 + 0.3 0.1 <u>+</u> 0.3	0.0 + 6.3 5.3 + 6.2	0.0 + 6.3 1.0 + 6.2
Los Angeles River at Figueroa Street	μŢ	5- 8 9- 5	0.5 + 0.4 1.2 <u>+</u> 0.6	0.1 ± 0.2 0.7 ± 0.5	3.2 <u>+</u> 6.5 15.9 <u>+</u> 7.0	0.0 + 6.3 12.1 + 6.4
Los Angeles River at Pacific Coast Highway	48	5- 8 9- 5	0.0 + 0.4 0.1 + 0.4	0.8 + 0.6 4.5 <u>+</u> 1.0	11.6 ± 6.4 43.7 ± 6.7	4.7 <u>+</u> 6.2 52.7 <u>+</u> 6.9

I HOLE N-9

RADIOASSAYS OF SURFACE WATER

LOS ANGELES DRAINAGE PROVINCE (U) (continued)

	040			Micro-micro curies per liter	uries per liter	
NOTION STORES	No.	Date	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
Water Year 1962-1963		1963				
Rio Hondo at Whittler Narrows	49	5-9 9-5	0.2 + 0.4 0.4 <u>+</u> 0.5	0.0 ± 0.3 0.1 ± 0.4	9.2 <u>+</u> 6.5 23.5 <u>+</u> 6.5	0.0 <u>+</u> 6.3 0.2 <u>+</u> 6.1
Mission Creek at Whittler Narrows	l49a	5-9 9-5	0.6 ± 0.4 Dry -no report	0.2 + 0.3	9.7 <u>+</u> 6.3	7.9 <u>+</u> 6.2
Rio Hondo above Spreading Grounds	4.gb	5-9 9-5	0.6 + 0.3 0.0 + 0.3	0.4 + 0.3 0.0 <u>+</u> 0.3	18.1 + 6.4 141.8 + 6.6	1.0 + 6.2 10.4 + 6.1
San Gabriel River at Whittier Narrows	50	5-9 9-5	Dry -no report Dry -no report			
San Gabriel River at Azusa Power House	50d	5- 9 9- 6	0.0 <u>+</u> 0.4 0.0 <u>+</u> 0.2	0.0 + 0.3 + 0.4 0.3 + 0.4	9.7 <u>+</u> 6.3 1.7 <u>+</u> 6.1	0.0 + 6.0
Ventura River near Ventura	61	5- 7 9- 4	1.0 <u>+</u> 0.0 1.0 <u>+</u> 1.0	0.1 ± 0.3 0.0 ± 0.0	0.0 + 6.2 9.8 <u>+</u> 6.3	0.0 + 6.1 4.4 + 6.2
Los Angeles Aqueduct neær San Fernando Upper Van Norman Inlet	02		See Page D-62	For Radioassay		
Colorado River Aqueduct near La Verne	69		See Page D-65	For Radioassay		

RADIOASSAY OF SURFACE WATERS

LOS ANGELES DRAINAGE PROVINCE (U)

Analyses Received from the Los Angeles Department of Water and Power

Source and : sampling point :	Date s	sampled	Micro-micro curies/liter Beta-Gamma Count*
Upper Van Norman Inlet	Oct.	1, 1962	2.9 + 4.1
(Los Angeles Aqueduct	Oct.	8, 1962	6.6 <u>+</u> 2.7
near San Fernando Station 70)	Oct.]	1962	4.1 + 2.7
	Oct. 2	22, 1962	10.0 ± 2.9
	Oct. 2	29, 1962	14.7 ± 3.0
	Nov.	5, 1962	7.0 + 2.7
	Nov.	14, 1962	9.6 ± 2.9
	Nov.]	L9, 1962	5.4 ± 2.8
	Nov. 2	26, 1962	10.0 ± 2.9
	Dec.	3, 1962	8.6 ± 2.9
	Dec. 1	10, 1962	6.6 ± 2.8
	Dec. 1	17, 1962	8.7 ± 2.9
	Dec. 2	26, 1962	9.3 <u>+</u> 3.0
	Jan.	2, 1963	5.8 ± 3.2
	Jan.	7, 1963	7.7 ± 3.2
	Jan. 1	14, 1963	7.5 ± 3.3
	Jan. 2	21, 1963	7.5 <u>+</u> 3.3
	Jan. 2	28, 1963	20.5 ± 3.7
	Feb.	4, 1963	11.1 ± 3.4

RADIOASSAY OF SURFACE WATERS

LOS ANGELES DRAINAGE PROVINCE (U)

Analyses Received from the Los Angeles Department of Water and Power (continued)

Source and sampling point	: : Date :	sampled	Mic	ro-micro curies/liter Beta-Gamma Count*
(Los Angeles Aqueduct	Feb.	11, 1903)	Aqueduct shut down
near San Fernando Station 70)	Feb.	18, 1963)	2-9-63 to 2-23-63
	Feb.	25, 1963)	
	Mar.	4, 1963		10.8 ± 3.4
	Mar.	11, 1963		11.5 ± 3.4
	Mar.	18, 1963		14.9 ± 3.5
	Mar.	25, 1963		16.1 ± 3.5
	Apr.	1, 1963		11.7 ± 3.4
	Apr.	8, 1963		11.0 ± 3.4
	Apr.	15, 1903		11.2 ± 3.7
	Apr.	22, 1963		13.4 ± 3.6
	Apr.	29, 1963		15.8 ± 3.5
	May	1, 19ó3		12.1 ± 3.4
	May	6, 1963		12.3 ± 3.5
	May	13, 1963		7.7 ± 3.4
	May	20, 1963		14.1 ± 3.4
	May	24, 1963		11.4 ± 3.4
	June	3, 1903		11.5 ± 3.4
	June	10, 1963		12.3 ± 3.4

RADIOASSAY OF SURFACE WATERS

LOS ANGELES DRAINAGE PROVINCE (U)

Analyses Received from the Los Angeles Department of Water and Power (continued)

Source and sampling point	: Date :	sampled	Micro-micro curies/liter Beta-Gamma Count*
(Los Angeles Aqueduct	June	17, 1963	21.8 ± 3.7
near San Fernando Station 70)	June	24, 1963	16.4 <u>+</u> 3.6
	July	1, 1963	19.9 ± 3.7
	July	8, 1963	18.0 + 3.5
	July	15, 1963	14.3 + 3.4
	July	22, 1963	13.9 ± 3.4
	July	29, 1963	10.8 + 3.5
	Aug.	5, 1963	13.3 ± 3.4
	Aug.	12, 1963	14.1 ± 3.4
	Aug.	19, 1963	11.8 ± 3.5
	Aug.	26, 1963	5.1 ± 3.2
	Sept.	3, 1963	5.2 * 3.1
	Sept.	9, 1963	7.3 ± 3.2
	Sept.	23, 1963	23.8 ± 4.7
	Sept.	30, 1963	9.1 ± 3.9

*Deviations reported at 95 percent confidence level in 1963 and 90 percent confidence level prior to 1963.

RADIOASSAY OF SURFACE WATERS

LOS ANGELES DRAINAGE PROVINCE (U)

Analyses Received from The Metropolitan Water District of Southern California

Source and sampling point	Da sam	te pled	Gross Alpha uuc/l.*	Gross Beta uuc/1.*
Colorado River Influent at				
F. E. Weymouth Softening and Filtration Plant	Mar.	1962	4.0	21.9
(Colorado River Aqueduct	Apr.	1962	4.5	11.5
at La Verne, Station 69)	May	1962	4.0	7.3
	June	1962	2.9	7.1
	July	1902	5.6	15.4
	Aug.	1962	4.5	5.0
	Sept.	1962	7.6	15.4
	Oct.	1962	3.1	15.9
	Nov.	1962	3.5	10.5
	Dec.	1962	5.9	11.4
	Jan.	1903	2.5	12.9
	Feb.	196 3	2.8	34.0
	Mar.	1963	6.5	17.8
	Apr.	1963	3.7	43.3
	May	1963	4.7	21.2
	June	1963	4.6	24.1
	July	1963	3.6	10.8
	Aug.	1903	2.5	15.6

RADIOASSAY OF SURFACE WATERS

LOS ANGELES DRAINAGE PROVINCE (U)

Analyses Received from The Metropolitan Water District of Southern California (continued)

Source and sampling point	Date sampled	Gross Alpha uuc/l.*	Gross Beta uuc ⁷ 1.*
(Colorado River Aqueduct at La Verne, Station 69)	Sept. 1963	6.4	23.2
at La Verne, Station 09)	Oct. 1963	5.1	10.3

*Unit = micromicrocuries per liter. Unless otherwise stated, the maximum statistical deviation in counting at the 90 percent confidence level for alpha is $\frac{1}{2}$ 0.7 uuc/l. and for beta is $\frac{1}{2}$ 2.6 uuc/l.

	Г	-	<u> </u>			
		Solid Beta		0.0 + 6.2 4.8 <u>+</u> 6.1	0.0 + 6.2 0.0 + 6.2	
	ries per liter	Dissalved Beta		0.0 + 6.2 2.8 + 6.1	6.6 + 6.4 0.0 + 6.2	
	Micro-micro curies per liter	Solid Alpha		0.0 + 0.3 0.2 + 0.4	0.0 <u>+</u> 0.5 0.0 <u>+</u> 0.4	
LAHONTAN DRAINAGE PROVINCE (W)		Dissolved Alpha		0.5 + 0.5 0.2 <u>+</u> 0.4	0.1 ± 0.5 0.1 ± 0.4	
I DRAINAG	Date	2	1963	5- 9 - 6 6	-7- - 6- 6-0	
LAHONTAI	Sta	٥N		67	67a	
	Station		Water Year 1962-1963	Mojave River near Victorville	Mojave River at the Forks	

D-67

TABLE D-10

RADIOASSAYS OF SURFACE WATER

TABLE D'IL Radioassays of surface water

COLORADO RIVER DRAINAGE PROVINCE (X)

	C ŧ U			Micro-micro ci	curies per liter	
Station	2 o 2 o 2 o	Date	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
Water Year 1962-1963		1963				
Colorado River near Topock, Arizona	54	5-16 9-19	0.0 <u>+</u> 0.0 0.0 <u>+</u> 0.0	0.9 <u>+</u> 0.5 0.4 <u>+</u> 0.7	$\frac{10.5}{6.6} + 6.2$	3.5 ± 6.3 11.6 ± 6.2
Colorado River below Parker Dam	55	5-16 9-19	0.7 <u>+</u> 0.4 0.3 <u>+</u> 0.4	0.4 + 0.4 0.0 + 0.3	5.2 <u>+</u> 6.4 10.5 <u>+</u> 6.1	0.0 + 6.2 5.6 + 6.0
Colorado River at Yuma, Arizona	56	5-15 9-11	0.0 + 0.3 0.1 <u>+</u> 0.3	$1.1 + 0.5 \\ 0.1 + 0.3 \\ - 0.$	2.4 + 6.3 5.9 <u>+</u> 6.1	2.8 + 6.3 2.8 + 6.3
All American Canal near Pilot Knob	56a	5-15 9-11	0.3 + 0.3 0.2 + 0.4	0.0 + 0.2 0.1 + 0.4	4.4 + 6.4 6.0 <u>+</u> 6.2	0.0 + 6.3 2.2 + 6.2
Colorado River below Morelos Dam	56b	5-15 9-11	0.0 + 0.2	0.5 <u>+</u> 0.4 0.0 <u>+</u> 0.4	0.0 + 6.3 1.6 <u>+</u> 6.2	0.0 + 6.3 1.5 + 6.2
Colorado River near Blythe	560	5-16 9-19	↑°0 + 0°0 †°0 + 2°0	0.9 <u>+</u> 0.5 1.5 <u>+</u> 0.6	$10.8 + 6.3 \\ 7.8 + 6.2 \\ 10.$	7.0 ± 6.2 14.9 ± 6.4
Lake Havasu, Colorado River Aqueduct at Intake	56à	Report	Reported by USGS			
New River at International Boundary	57	5-14 9-11	0.0 +1+1 0.0	0.6 <u>+</u> 0.4 0.5 <u>+</u> 0.4	17.7 + 6.5 14.4 <u>+</u> 6.5	0.0 <u>+</u> 6.1 0.0 <u>+</u> 6.2
New River near Westmorland	58	5-14 9-10	0.0 + 0.2 0.2 <u>+</u> 0.4	1.0 + 0.5 1.2 + 0.6	3.8 + 6.4 14.9 <u>+</u> 6.2	6.8 + 6.4 17.8 <u>+</u> 6.3
Alamo River at International Boundary	59	5-14 9-11	0.1 + 0.2 0.0 <u>+</u> 0.2	0.5 <u>+</u> 0.3 0.3 <u>+</u> 0.3	10.8 + 6.3 13.3 + 6.3	3.7 <u>+</u> 6.2 0.3 <u>+</u> 6.1
Alamo River near Calipatria	60	5-14 9-10	0.3 + 0.4 0.1 <u>+</u> 0.3	0.6 + 0.5 0.9 <u>+</u> 0.5	16.0 + 6.4 4.6 + 6.2	7.2 + 6.2 13.6 <u>+</u> 6.3

RADIOASSAYS OF SURFACE WATER

COLORADO RIVER DRAINAGE PROVINCE (X) (continued)

	Station Sta Date Date Niccro-II	1963 1963	Whitewater River near Whitewater 68 $5-14$ 1.2 ± 0.6 0.1 ± 0.0 $9-11$ 0.1 ± 0.4 0.0 ± 0.0	Salton Sea at Salton Sea State Park 68a 5-14 0.0 + 0.2 0.3 + 0.1 + 0.1 - 0.1 + 0.3 - 0.3 +	Whitewater River near Mecca $68b$ $5-14$ 0.0 ± 0.4 1.5 ± 0.4 $9-11$ 0.3 ± 0.4 1.4 ± 0.4	
minero outron por littor	Solid Alpha Dissolved Beta	-	$\begin{array}{cccc} 0.4 & 1.6 + 6.3 \\ 0.4 & 0.0 + 6.2 \end{array}$	0.4 21.7 ± 6.5 0.2 24.9 ± 6.5	0.7 22.2 <u>+</u> 6.4 0.6 8.9 <u>+</u> 6.3	
	Solid Bato		5.7 <u>+</u> 6.2 0.0 <u>+</u> 6.2	0.0 <u>+</u> 6.1 1.9 <u>+</u> 6.1	25.2 + 6.5 42.6 + 6.9	

TABLE D-12 RADIOASSAYS OF SURFACE WATER

SANTA ANA DRAINAGE PROVINCE (Υ)

	uto			Micro-micro cu	curies per liter	
Vtaton	No.	Dote	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
Water Year 1962-1963		1963				
Warm Creek at Colton	50b	5-10 9- 6	0.3 + 0.3 1+ 0.3 1+ 0.4	0.7 <u>+</u> 0.4 0.1 <u>+</u> 0.3	12.9 + 6.4 15.0 + 6.3	0.0 <u>+</u> 6.1 10.7 <u>+</u> 6.2
Warm Creek at San Bernardino	50c	5-10 9-6	Dry -no report Dry -no report			
Santa Ana River near Arlington	21	5-10 9-13	4.0 + 0.0 4.0 <u>+</u> 7.0	0.4 + 0.3 0.8 <u>+</u> 0.6	2.3 + 6.2 2.6 <u>+</u> 6.1	0.0 + 6.2 2.0 + 6.1
Sa n ta Ana River below Prado Dam	51a	5-10 9-13	4°0 + 0°0 5°0 + 9°0	0.5 + 0.4 0.4 <u>+</u> 0.4	3.0 + 6.4 2.7 <u>+</u> 6.1	0.0 <u>+</u> 6.3 2.1 <u>+</u> 6.1
Santa Ana River near Mentone	qτς	5-10 9-6	1.7 ± 0.6 2.7 ± 0.8	0.4 + 0.5 0.3 <u>+</u> 0.4	3.3 + 6.4 4.7 <u>+</u> 6.2	0.0 <u>+</u> 6.3 0.0 <u>+</u> 6.1
Santa Ana River near Norco	51e	5-10 9-13	0:7 <u>+</u> 0.5 1.5 <u>+</u> 0.7	0.2 + 0.4 0.0 + 0.5	9.8 <u>+</u> 6.2 11.6 <u>+</u> 6.2	11.3 $\frac{+}{1}$ 6.2 6.7 $\frac{+}{1}$ 6.1
Chino Creek near Chino	86	5- 9 9-11	Dry -no report 0.0 <u>+</u> 0.4	0.4 ± 0.5	22.8 ± 6.4	2.3 + 6.1
Lake Elsinore at North Shore	8	5-13 9-17	Dry -no report Dry -no report			

	WATER	(2)
D-13	OF SURFACE WATER	PROVINCE
IABLE	RADIOASSAYS OF	SAN DIEGO DRAINAGE
		2

	U to			Micro-micro curies per liter	uries per liter	
norion	No	Date	Dissolved Alpho	Solid Alpha	Dissolved Beta	Solid Beta
Water Year 1962-1963		1963				
Santa Margarita River near Fallbrook	51c	5-13 9-17	0.0 + 0.3 0.0 + 0.3	0.3 ± 0.4 0.0 ± 0.4	9.4 + 6.2 5:4 <u>+</u> 6.3	7.7 + 6.1 2.4 + 6.2
San Luis Rey River near Pala	62	5-13 9-17	Dry -no report Dry -no report			
Escondido Creek near Harmony Grove	63	5-13 9-17	0.0 + 0.4 0.0 <u>+</u> 0.2	1.0 ± 0.5 0.1 ± 0.3	15.7 <u>+</u> 6.4 10.2 <u>+</u> 6.2	4.3 + 6.2 5.7 <u>+</u> 6.2
San Dieguito River below San Pasqual Valley	179	5-13 9-17	Dry -no report Dry -no report			
San Diego River at Old Mission Dam	65	5-13 9-17	0.3 + 0.3 - 0.3 - 0.3	4.0 + 9.0 4.0 + 9.0	8.5 + 6.2 2.1 <u>+</u> 6.3	1.0 + 6.3 0.0 + 6.2
Forester Creek at Mission Gorge Road	65а	5-13 Dry - Discontinueà	Dry -no report inued as of 7-1-63	<u></u> 23		
Pring Valley Creek near La Pressa	65Ъ	5-13 9-17	0.1 <u>+</u> 0.4 0.1 <u>+</u> 0.3	1.6 ± 0.7 0.4 ± 0.3	21.3 + 6.4 26.4 <u>+</u> 6.5	11.7 + 6.3 44.5 <u>+</u> 6.7
San Diego River near Mission Gorge Road	65 c	5-13 9-17	0.3 + 0.4 4.0 + +.0	0.2 + 0.4 0.0 <u>+</u> 0.3	9.6 + 6.3 17.2 + 6.4	0.0 <u>+</u> 6.2 0.0 <u>+</u> 6.1
Tia Juana River at International Boundary	99	5-13 9-16	Dry -no report Dry -no report			

		Zinc	00*0	
		mutpore	- ed	
		Titanium Vanadium	đ	
		Lead Tr		
		Nickel (
		Molyb- denum (Mo)		
	up II	Manga- nese (Mn)	0.00	
	Constituents in ports per million	Germo - nium (Ge)	00*0	
	in port	(Gallium		
	stituents	Iran (70.0	
ICE I	Con	Copper (Cu)		
CENTRAL COASTAL DRAINAGE PROVINCE		Chra- C mum (Cr)		
		(Cabait (
COASTAL		(Cd)		
ENTRAL		5		
		Le Beryl. ltum (Be)	್ಕೆ	
		Alumi- num (AI)	0*05	
		Date	May 1963	
		Sto No	市山島	
		Station	Cuyama River near Garey	

TABLE D-14 SPECTROGRAPHIC ANALYSES OF SURFACE WATER WATER YEAN 1962-1963

	2	ç q		7
	-	(Z) 5+7		
	ripouon	(V) 9.1		
	Titonium	(Tr) 0.57 ^b		
	Nickel	(Ni) 2+9		
	Malyb- denum	(oM)		
uo i	Mongo- nese	(Mn) L+4b		
s per bil	Germo -			
s in port				
nstituent		1+ 3 1+ 3		
Co	Copper	300d		
		1.4b		
		1.4b		
	Codmium (Cd)	1.4 ^b		
	Bismuth (Bi)	0.29 ^b		
	Beryl. Ium (Be)	0.57 ^b		
	Alumi. num (Af)			
	Dote	⇒ept. 1963		
	Sto No	q ^{ti} ti		ri ri
	Station	Santa Ynez River at Cachuma Reservoir		b. Results are less than the amount indicated, d. Results are more than the amount indicated.
	Constituents in ports per billion	Dote Atumu: Beryl. Bismuth Codmium Cobolt Chro Coper Iron Getture Mongo. Mongo. Mondum Atumu: Beryl. Bismuth Codmium Cobolt Chro Coper Iron Remo- Mongo. Mongo. Mondum Atumu: Beryl. Bismuth Codmium Cobolt Iron Remo- Mongo. Mongo. Mondum	Sto No Dote Turm: (1,1) Harm: (1,1) Berryi (1,1) Constituents in port per lition No Aum: (1,1) Berryi (1,1) Berryi (1,1) Berryi (1,1) Berryi (1,1) Constituents in port per lition No Aum: (1,1) Berryi (1,1) Berryi (1,1) Berryi (1,1) Berryi (1,1) Copper (1,1) Copper (1,1) Incompositive (1,1) Nicket Leod Titonum Vonodum (1,1) No Sept. 5.7 0.57b 0.39b 1.4b 1.4b 30d 4.3 5.7b 0.29b 1.4b 0.57b 9.1	No. Annumber of the second construction in contract in contrac

TABLE D-14 SPECTROGRAPHIC ANALYSES OF SURFACE WATER TABLE D-15 SPECTROGRAPHIC ANALYSES OF SURFACE WATER

WATER YEAR 1962-1963

LOS ANGELES DRAINAGE PRUVINCE U

	1									
	Zinc	(Ju)	00*00	00.00	00*00	00*00	00*00	00*00	00*00	
	munipoup,	(^)	ದ ಕ	CJ B	۵ •	۵) ۱	تا 1	25 8	as s	
	Titanium Vanadium	(T i)	03 8	ci e ŝ	ci i	c) P	cj 1	đ	đ	
	Lead	(Pp)	0*00	Trace	00*0	00*0	0*00	00*0	Trace	
	Nickel	- 2	000	00*00	00*0	0.00	0*00	Trace	0*00	
	Molyb.	denum (Mo)	0*00	40*0	0*00	0*00	0,02	Trace	0*00	
up		nese (Mn)	0.16	0,12	0.00	Trace	0,10	0*05	00*0	
per millo		(Ge)	0*00	00*0	0.00	00*0	00*0	00*0	0*00	
in parts	Gallium G	(00)	8	0 8	C	Barr	0	8	8	
Constituents in ports per million	tron 60	(Fe)	70.0	0,10	** ° 0	0.72	0*03	0.08	0*02	
Con	Capper	(C u)	0*001	0*05	0.01	0 74*0	0*05	0.003 0	0 TC*0	
		(Cr)	0*00	0*00#	0.00	0*0#	0.008	0.001	Trace	
	Cobalt	(C 0)	00°0	0°*0	0°00	0°00	0°00	00*0	0*00	
	Cadmium	(Cd)	0.00	00*0	0.00	00*0	00*00	00*0	0*00	
	Bismuth	(81)	đ	đ	2 1	đ	ଅ ୧	0 1	đ	
	Beryl.	(Be)	a I	03 8 8	ದ 1 1	a.	8	ed I	đ	
		(A)	0.03	0*05	0.05	0.33	0*02	0.13	0*05	
	Date		May 1963	May 1963	May 1963	May 1963	May 1963	May 1963	May 1963	
	Sta		3	146e	Lη	94	64	49a	61	
	Station		Santa Clara River at L.AVentura County Line	Santa Clera River at Santa Paula	tos Angeles River at Figueros Street	Los Angeles River at Pacific Coast Highway	Rio Hondo at Whittler Narrows	Mission Creek at Whittler Narrows	Ventura River ucar Ventura	

TABLE D-IS SPECTROGRAPHIC ANALYSES OF SURFACE WATER

WATER YEAR 1962-1967 LOS ANGELES DRAINAGE PROVINCE

B.M.M. General (7.01) <	
	Beryl.
1, ub 1, ub 1, ub 6, c 5, rb 0, c, spb 1, ub 8, o 1, ub 0, spb 0, spb 0, spb 3, us 1, ub 0, spb 1, ub 0, spb 3, us 1, ub 0, spb 3, us 1, ub 1, ub	1.0m (Δι) (Be)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sept. 4.6 0.57 ^b 0
1.4° 1.4° 1.4° 1.7° 2.7° 0.29° 33 15° 15° 0.57° 20° 1.4° 1.4° 1.4° 1.4° 1.4° 1.4° 0.57° 25° 1.4° 1.4° 1.4° 9.1 5.7° 0.29° 25° 1.4° 0.57° 1.4° 1.4° 1.4° 9.1 5.7° 0.29° 21° 1.4° 0.57° 1.4° 1.4° 1.4° 9.1 5.7° 0.29° 21° 1.4° 0.57° 1.4° 1.4° 1.4° 0.29° 1.4° 0.5° 1.4° 0.57° 1.4° 1.4° 1.4° 0.29° 1.4° 0.59° 1.4° 0.57° 1.4° 1.4° 1.4° 0.29° 1.4° 0.59° 1.4° 0.59° 1.4° 1.4° 1.4° 0.59° 1.4°	idoa [963 5.7 0.57 ^b
1.4b 1.4c 1.4b 33 5.7b 0.29b 175d 0.29c 25 1.4b 0.57b 13 1.4b 1.4c 1.4b 9.1 5.7b 0.29b 9.1 15 0.63 1.4b 0.57b 18 1.4b 1.4c 1.4b 15 5.7b 0.29b 9.1 71 20d 1.4b 0.57b 13 1.4b 1.4b 1.4b 15 5.7b 0.29b 9.1 71 20d 1.4b 0.57b 14 1.4b 1.4b 5.1 5.7b 0.29b 1.4b 0.50 1.4b 0.57b 14 1.4b 1.4b 5.1 5.7b 0.29b 1.4b 0.57b 14 1.4b 1.4b 1.4b 5.1 1.4b 0.57b 14 0.57b 14 1.4b 1.4b 1.4b 5.7b 0.29b 1.4b 0.57b 0.59b 1.4b 1.4b 1.4b 1.4b 5.5 1.4b 0.595 1.4b 0.57b 0.59b 0.59b	47 Sept. 7.7 0.57 ^b
1.4b 1.4c 1.4b 9.1 5.7b 0.29b 9.1 15 0.63 1.4b 0.57b 18 1.4b 1.4c 1.4b 15 5.7b 0.29b 51 7.1 20d 1.4b 0.57b 18 1.4b 1.4b 1.4b 5.1 5.7b 0.29b 1.4b 4.4b 0.57b 1.4b 7.1 1.4b 1.4b 5.1 5.7b 0.29b 1.4b 4.4b 0.50b 1.4b 0.57b 0.59b 1.4b 1.4b 5.1 5.7b 0.29b 1.4b 5.6 1.4b 0.57b 0.59c 1.4b 1.4b 5.6 1.4b 5.6 1.4b 0.57b 0.59c 1.4b 1.4b 5.6 1.4b 5.5 0.59b 1.4b 0.57b 0.59b	3ept. 34 0.57 ^b
1.4b 1.4c 1.4b 15 5.7b 0.29b 51 7.1 20d 1.4b 0.57b 13 1.4b 1.4b 1.4b 5.1 5.7b 0.29b 1.4b 4.5 0.57b 7.4 1.4b 1.4b 1.4b 5.1 5.7b 0.29b 1.4b 4.5 0.57b 7.4 1.4b 1.4b 1.4b 5.4 0.29b 1.4b 6.6 1.4b 0.57b 0.29c 1.4b 1.4b 5.4 0.29b 1.4b 6.6 1.6 1.4b 0.57b 0.29c	Sept. 49 1963 11 0.57 ^b
1.4b 1.4b 1.4b 5.7b 0.29b 1.4b 6.6 1.4b 0.57b 0.57c 1.4b 1.4b 1.4b 5.4b 0.29b 1.4b 6.6 1.4b 0.57b 0.57c	sept. 49b 1963 9.7 0.57 ^b
Lub Lub Lub Lub 5.4 5.7 0.23 ^b 1.4 ^b 6.6 1.6 1.4 ^b 0.57 ^b 0.39 ^c	Jept. 3.1 0.57 ^b
	61 ^{Sept.} 3.1 0.57 ^b

Results are less than the amount indicated. Results are approximate to the amount indicated. Results are more than the amount indicated.

b. Re. c. Re. d. Re

	WATER
	SURFACE
TABLE D-16	ANALYSES OF
	SPECTROGRAPHIC

WATER YEAR 1962-1963

COLORADU RIVER BASIN DRAINAGE PROVINCE X

	· · · · ·		
		(J)	0.00
	Vonadium	(^)	d .
	Titonium Vongdium	(L)	e":
		(Pb)	°.
	Nickel	(¹ N)	8.
	Molyb. denum	(ow)	Trace
noil	Mango. rese	(W u)	40.0
Constituents on ports per million	Germo - num	(Ge)	°.
s por			
onstituen	L		2- 1 - 2-
	Copper	((()	0.005
	Chro.	3	°.9
	Cobolt Chro-	1001	8°.
	Bismuth Codmium		8.
	Bismuth		a :
	Beryl. lium		d •
	Alumi- num		0.44
	Dote	May	1963
Sto No			3
	Stofion		Colorado River at Yums, Arisona

	WATER
	SURFACE
9	ЧO
TABLE D-I	ANALYSES
	SPECTROGRAPHIC

WATER YEAR 1962-1963

COLORADO RIVER BASIN DHAINAGE PROVINCE N

	T	· 1			
	Zinc	(Zr)	6.3	qL.2	
	Titanum Vanad-um	1	9+4	7.7	
	Tidovem	(1)	q25*0	0.57 ^b	
	Lead	(GA)	1.4p	1.4b 0.57b	
	Nickel	(i N)	1,2	1.3	
	Moiyb-	denum (Mo)	15	8	
ion		nese (Min.)	Ξ	1.4b	
Constituents in parts per billion	Cermo -	(Ge)	0.29 ^b	0.29 ^b	
tin part	Gallium Germa -	(00)	5.7 ^b	5.7b	
inst-tuent	Iron	(Fe)	6.3	4°6	
Ű	Capper	(n))	$1.4^{\rm b}$	q [†] r*T	
	Chro.	Enter (Cr.)	$1, h^b$	1.4° 1.4b	
	Cabalt	(Co)	q [†] °T q [†] *T	7.4°C	
	Bismuth Cadmium	(Cd)	q [†] 1°T q62°0	1.4b	
	Bismuth	(8)		9°50°p	
	Beryt	frum (Be)	0*57 ^b	0*57 ^b	
	Alumi-	num trum (Ar) (Be)	h.6	5 ° 4	
	Date		Sept. 1963	Sept. 1963	
	Sto	No	54	26	
	Station		Colorado River cear Topock, Arizona	Colorado River at Yuma, Arizona	

b. Results are less that the amount indicated.
 c. Results are approximate to the amount indicated.

TABLE D-17 SPECTROGRAPHIC ANALYSES OF SURFACE WATER

WATER YEAR 1962-1963

SANTA ANA DRAINAGE PROVINCE Y

SPECTROGRAPHIC ANALYSES OF SURFACE WATER TABLE D-17

WATER YEAR 1962-1963

SANTA ANA DRAINAGE PROVINCE Y

b. Results are less than the amount indicated.
 c. Results are approximate to the amount indicated.
 d. Results are more than the amount indicated.

	WATER
	SURFACE
TABLE D-18	ANALYSES OF
	SPECTROGRAPHIC

WATER YEAR 1962-1963

RIO DRAINAGE PROVINCE

_			
	Z .nc	00°0	
	anadium (V)	ය 8 8	
	Tritonium Vanadium (Tri) (V)	ය 1	
	Leod Tr	00*0	
	Nickel (Ni)	0.01	
	Molyb- denum (Mo)	0*03	
c	Manga- M nese a (Mn)	0*1	
per millio	Germa - N nium (Ge) (00*0	
Constituents in parts per million	(Gal)um (G	0	
stituents	Iron Go (Fe)	o, m	
:	Capper (Cu)	0*05	
		00 * 0	
I TOWNTYN	Cabalt Chra. mum (Co) (Cr)	00°0	
TANTANYI TOWNTWIN OFFICE AND	(Cd)	0*0	
ATRC .	Bismuth Codmium (Bi) (Cd)	ت ا ا	
		¢ I	
	Alumin Beryl. num lium {Al} (Be)	1.1	
	Dote	May 1963	
	Sta No	63	
	rai/a)	Escondido Creek near Harmony Grove	

	1			
		q		
	muipouov		0.29	
	Trionium Vanodium		0.57 ^b	
		(q. q.	1.4b	
	Nicket		61 11	
	Molyb. denum	Í Ó M	1.1	
b llion	Manga	(uw)	91 100q	
ts per b	Cermo.	р 1 се	0.29 ^b	
Canstituents in parts per	Gallium	P 4	5+7 ^b	
nstituen	iron		34 16	
	Copper	d. d	1.4 ^b	
	Chro.		1*#p	
	1 -	a a	1. ⁴⁵	
	Codmium		1.4b	
	8. smuth		0.29 ^b	
	Beryt	ě,	0.57 ^b	
	Alumi num Aum	1	2*1	
	Date	Sept.	1903 Sept. 1963	
	510 No		65°	
	Station		Eacondido Creek near Harmony Grove San Diego Silver near Misaion Gorge Road	

SPECTROGRAPHIC ANALYSES OF SURFACE WATER TABLE D-18

Results are less than the amount indicated. Results are approximate to the amount indicated. Results are more than the amount indicated.

ç ç ç

APPENDIX E

GROUND WATER QUALITY DATA

(1990)(1793)(A

GROUPS SHEETS CLARKERS

TABLE OF CONTENTS

APPENDIX E

Table No. Page Mineral Analyses of Ground Water E- 1 Central Coastal Drainage Province (T) E- 1 E- 2 Los Angeles Drainage Province (U) E- 6 Lahontan Drainage Province (W) E- 3 E-14 E- 4 Colorado River Basin Drainage Province (X) E-17 E- 5 Santa Ana Drainage Province (Y) E-20 E- 6 San Diego Drainage Province (Z) E-25 Radioassay of Ground Water Los Angeles Drainage Province (U) E-28 E- 7 E- 8 Lahontan Drainage Province (W) E-29 E- 9 Colorado River Basin Drainage Province (X) E-30 E-10 Santa Ana Drainage Province (Y) E-31


	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
	Tatal hardness a s	Co C 03	511	54]	257	144	172	622	
nts in n	<u>T D S</u> Evap 180°C Evap 105°C	Computed	1075 1039	1020 1079	480 516	301	1060 1082	520 515	
constituents per million			20	0 7	47	0 7	~~~~~	60	
_	Silt-	2016					<i>с</i> ∩		
Mineral parts	Baran	α	0.46	1•35	0 • 35	0.06	2 • 00	0°06	
-	Fluo-		0.6	0 • J	0 • 7	ۍ ۵	1.2	ம் • 0	
		<u>.</u>	5.5 .09	4 • 0 0 • 0 6	15. 0.24	10. 0.16 3	52 • 0 • 84	19. 0.31 4	
	trote	2 Z	0						
million e value	Chlo-	T0900	47 1.33 8	145 4.09 22	68 1.92 22	43 1•21 25	107 3.02 18	69 1•95 23	
parts per million equivalents per million percent reactance value	Sulfate	400	469 9•76 59	294 6.12 32	76 1.58 18	24 0.50 11	354 7.37 44	43 1.00 12	
per lents † re		E0.3	320 •24 32	525 •60 46	303 4.97 57	176 2.888 61	339 5 • 5 6 3 3 3	312 5 • 1 1 6 1	
parts per equivalents percent re	- Bicar - bonote	-	5	ŝ	t.				
000	6	UNIT	0	0	0	0	0	0	
Ē	Potos - sium	HYDRO	0.13 1	4 0•10 1	3 0.08 1	4 0•10 2	0.05	о.0 1	
constituents	E nipos	SALINAS HYDRO UNIT	140 6.09 37	180 7.883 543	3 • 4 8 4 0	1.83 38	310 13.48 79	40 1.74 21	0
Mineral co	. e E	N N	5.18 3.18 32	100 8.22 44	3 • 29 3 8	0.82 0.82 17	21 1.73 10	17 1.40 17	
W	E	с. Т.09Н0	101 5.04 31	с г 2 • 5 9 14	1.85 21	2 • 55 2 • 55	34 1•70 10	105 5•24 62	
Specific conduct-	<u> </u>	1 1	1462	1664	814	479	1634	786	
0, 0	Hq	-	7.3	α•/	7•6	7.6	7.9	7.4	
Temp	when sampled in°F	SUBUNIT	74	22	¢ C	66	74	1	
Te	¥ log	DRO	2			>	Σ	2	
well	npled	PASO ROBLES HYDRO	245/12E-17L 2 9-23-63	245/15E-17E 1 W 0-24-63	255/12E-16N 1 M 9-23-63	1	265/16E-31B 1 9-26-63	775/13F-36R 1 ^W 9-27-62	
Stote well	Date sampled	ROBL	5/12E-1	5/15F-17 0-04-63	s/12E-1€ 9+23-63	5-26-63 9-26-63	S/16E-33	15/12F-26 9-27-62	
S	Da	0 A S O	245/	1070	1250	-6	9-69-	1270	

									_															
	Totol			592		82		504		204	1		C 0 8		523	0		651			1013		678	
canstituents in ber million	TDS	Evap 180°C Evap 105°C Camputed		026	879	390	368	800	782	475		474	1470	1371	Cact	0007	1029	1100		0501	1610	1530	1200	1173
canstituent per million	S.i.1-		1	19		55		~		57			65		00	L 7		28			33		38	
Mineral parts p	Baran	ß	1	0.24		0.06		0.18		0.08			0.22		30.05	0 • V		0.20			0.20	_	0.22	
	Fluo-	r: de	1	0.2		0 • 2		0.6		0.4			4		۲ ر	•		0.7			0 . 7		0 • 4	
	I N	trate NO 3		22.	0.35	24.	0.39	16.	0.26	14.	0.23	3	106.	1.71		0.25		24.	0.39	N	6.1	01.0	42.	0.68
million e value	C h to -	ride C 1	T1200	32	0 • 90	139	3.92	28	0.79	116	3.27	46	76	2.14 10	сr с	46.6	14	70	1.97	12	120	3.30	138	3.89 20
r million Is per m reactance	Sulfate	504	TIN	400	8.33	00	0.17	666	6°93 54	67	2 • 02	28	609	12•68 58	1.56	0 1 0	57		10.01		777	16•18 66	423	8.81 46
parts per equivalents percent r	Bicar -	bonote HCO3	YDRO U	301	4 • 93	56	0.92	298	4 • 8 8 3 8	98	1.61	23	022	5 • 2 4 2 4	276	C 2 7	72.02	254	4.16	52	305	5.00	354	5 80 30
par	Carban -	ate CO 3	MARIA-CUYAMA HYDRO UNIT	4	0.13	0		C		0	1		0		c	>		0			0		0	
Ē	Potos -	s ru	RIA-CU	· ·	0.03	ŝ	0.08	2	0.05	ŝ	0.08			0.10	7		-1	4	0.10	-1	4	0.10	4	0.10
constituents	Sodium	o N	SANTA MA	60	2.61	86	3 • 74 68	62	2.70 21	72	3.13	43	α.	3•83 18	0	10.6	23	82	3.57	21	100	4.35	126	5 • 48 29
Mineral co	- au Do M	۳ u م ۸ g	1 V	11	5 84 40		0.99 18	5 2	5°1° 40	24	1.97	22	20 E	а 39	0	5.76	30.0	70	5 • 76	35	103	8.47 34	69	5.67
2	Calcium	0 U	T12A0	120	5°99 41		0.65	99	4 • 89 38	42	2.10	29	189	9 • 4 3 4 3	a c r		6 J	145	7.24	43	236	11.78	158	7.88
Specific canduct-	(micro -	mhos at 25°C)		1140		602		1103		745			1802		0771	1		1414			1988		1684	
	Hd		T I NUEUS	°. •		6.9		7.5		7.0			7.7		, r	t •		7.2			7.5		7.5	
Temp	when	in °F	1	54		1		64		68			61				-	63			64		63	
State well number		Date sampled	SANTA MARIA HYDRO	5 1 921-M22/N6	10-14-63	9N/33W- 9A 1 S	7-18-63	5 1 821-M22/NO	7-18-63	9N/34W- 9E 1 5			S I N9 -M7E/NUI	7-18-53	1 UN / 3 / M 0 1 0 H 1 0 H			2 [ C5 -M2E/NU]	7-19-63		10N/35W- 7F 1 S	1-19-63	10N/35W-21C 1 S	7-19-63

			1				
	Totol hordness 05 CaCO3		466	571	474	1002	5 7 1
tuents in Illian	T 0 5 Evep 180°C Evep 105°C Camputed		844	1034	840	1585	985
constituent per million	5:11- 6.0 5:0.2	1	30	26	24	36	ς α
Mineral constituents parts per million	Boron B		0.13	0 • 2 1	0.19	0.28	0 • 20
	Fluc		0 . 2	0 • 1	0 • 4	0 • 7	0 4
	Nr - trote NO 3		67. 1.08 9	° 0	8•6 0•14 1	6.7 0.11	2 • 2 • 0 • 0 •
million e value	Chlo - ride C1	T1200	66 1.86 15	48 1•35 9	37 1.04 8	93 2.62 11	1 - 1 0 1 - 0 0 br>0 - 0 0 - 0 0 - 0 0 0 - 0 0 - 0 0 0 - 0 0 - 0 0 0 - 0 0 0 - 0 0 0 0
per eactanc	Sulfate S0.4		293 6•10 49	517 10.76 69	370 7.70 62	662 13.78 55	4 0 0 4 0 0 0 4
equivalents	Bicor - bonote HCO3	IYDRO UI	207 3.39 27	209 3•43 22	218 3•57 29	510 8.36 34	5 0 9 0 0 9 0 0
be be	Carban - ate CO 3	у АМА Н	0	0	0	0	0
Ē	Potos - sium K	RIA-C( ED)	0.05	4 0.10 1	3 0.08 1	5 0•13 1	0 • 1 0 1 1
constituents	Sodium No	SANTA MARIA-CUYAMA HYDRO UNIT (CONTINUED)	3 • 04 24	85 3 • 70 24	63 2.74 22	110 4.78 19	3 55 2 2 2 2
Mineral co	Mogne sium Mg	S)	63 5•18 42	52 4。28 28	3 • 13 25	90 7.40 30	4 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1
Σ	Colcium Co	T12A0	4°14 4°14 33	143 7.14 47	127 6 • 34 52	253 12•62 51	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Specific conduct- ance	1 0		1040	1220	1020	1969	1279
	Ч	SUBUNIT	7.8	8 2	8 • 1	7 • 0	۲ ۵
Temp	sampled in ^a F		64	1	62	60	
		HYDR(	2 5		1 I	1	S)
State well number	Date sampled	SANTA MARIA HYDRO	11N/34W-29P 2 10-14-63	11N/35W-18M 1 10-14-63	11N/35W-28B 10-14-63	11N/35W-33F 7-19-63	114/36W-13R 7-18-63

Ē
ЯĽЕ
TAE

	Toto) hardness as CaCO⇒	2	1020		1014		1003		463			1128		907		930			1006		1033	
.c	C hardnes							9					00		<i>m</i>				_	9		2
constituents per million	T D S Evap 180°C Evap 105°C Computed		160	1531	1603	1541	1563	1536	2288	0110	1 7 7	1764	1678	1709	1643	1590	0 a [	COCT	1642	1576	1682	1562
constituent per million	5111- Ca S10.5	,	80		17		15		17			16		22		22			18		15	
Mineral parts p	Boron B		0.07		0 • 08		0 • 10		0 • 0 9			0.07		0.39		0.14			0.08		0.05	
	Fluo- ride F		1.3		1.6		0 • 9		0.7			0.8		0.6		0.7			0•8		0 • 9	
	trate NO4	,	2 • 5	0°04	8.7	0.14	7 <b>.</b> 4	0•12 1	• 77	0.71	2	22 .	0.35	8 • 7	0.14	5.0	0.08		5.6		11.	0.18
million e volue	Chlo- ride Cl	T1200	1-1	0.39	1	0.51		0.39 2	23	0.65	7	16	0.45	131	3.69	30	0.85	t	20	•	18	0.51
r million 1s per r reactance	Sulfate SOA			20.57	1004	20•90 88	966	20•78 87	1352	28°15	00	1074	22 <b>.</b> 36 86	932	19.40	956	19.90	φp	1020	87	1003	20•88 87
parts per equivalents percent r	Bicor - bonote HCO4	YDRO U	177	2.90	131	2.15	162	2.666 11	262	4.29	c 1	174	2.85	128	2.10 8	134	2.20	10	159	10.2	153	2.51
por eq.	Carbon - ate COu	MARIA-CUYAMA HYDRO UNIT	0		0		0		0			0		0		0			0		0	
Ľ	Patas - sium K	RIA-CU	1	0•10	4	0•10		0.10	ŝ	0.13		4	0.10	ŝ	0.13	4	0.10		4 .	0 1 0	4	0.10
constituents	E n po g	SANTA MA	87	3•78 16	83	3.61	80	3•48 15	115	5.00	C 7	80	3.48	170	7.39 29	107	4.65	20	91	3•75 16	82	3°57 15
Mineral co	Magne- sum Mag		10	8°80 36	102	8 3 3 2	100	8 • 22 35	143	11.76	ς 4	111	9•13 35	82	6.74 26	06	7.40	32	100	34	94	7.73
ž	Colc: 43	11200	23	11•58 48	238	11.88	237	11.83	350	17.47	10	269	13.42	228	11.38	224	11.18	4 8	23	11-88	259	12.92
Specific conduct-	(micro - mhos at 25°C)		1740		1725		1610		1930			1850		1920		1700			1650		1705	
	I	SUBUNIT	8 • 2		8 • 2		0 • 0		7.9			8 • 2		8 • 2		8 • 1			7.9		8.0	
Temp	when sampled in ° F		59		61		62		1			62		71		1			63		62	
		H X	2 S		1 S		1 S		l S			1 S		1 S		1			2 S		4 S	
well	ample	ALLE	-13C	3	.19F	3	-20H	3	-216	6		•22E	3	-23E	3	4 8	6		-14C	2	-14C	23
State well number	Date sampled	CUYAMA VALLEY HYDRO	7N/24W-13C	4-25-63	9N/24W-19F	4-25-63	10N/25W-20H 1	5-28-63	10N/25W-21G 1	4-25-63		10N/25W-22E	4-25-63	10N/25W-23E	4-25-63	10N/26W- 4R	4-25-63		10N/26W-14C 2	69-67-4	10N/26W-14C 4	4-25-63

Ī	
لنا	i
	1
щ	
TABL	1
ď	
F.	1
	00000
	2

					_
1	Tatal hardnes as CaCOT	1		1229	
tuents in illion	T D S T at			1229	
constituent per million	Silt= co SiO_2			μ Γ	
Mineral constituents parts per million	Baran B			90.0	
	Fluo. ride F			4.0	
	N = - trate NO3			0.056	
million per million ctonce volue	Chlo- ride Ci	T1200		0 0 0 0 0 1	
0	Sulfate S0.4	NIT		24.21 85	
ports per equivolents percent re	Bicar - bonate HCO3	'DRO U		N 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
por per	Carban - ate CO3	YAMA HI		0	-
ni s	Potos - sium K	ARIA-CU	( D )	0.10	
constituents	E N N O S O G	SANTA MARIA-CUYAMA HYDRO UNIT	(CONTINUED)	100 4.35 15	
Mineral co	Magne-Sodium sium Mg Na	S	)	9,05 31	
2	Colcium Co	11200		15.52 5.5 5.3 5.3	
Specific conduct- once	(micro- mhos at 25°C)	F		1950	
	H d	JBUNI		О °	
Temp	sampled in ^a F	DRO SU		ν Ω	1
		Υ HY		s	
State well number	Date sampled	CUYAMA VALLEY HYDRO SUBUNIT		10N/26W-23P 1 5-28-63	

	Tatal hardness a s Co C O 3		356	440		516	475		3915		5344		5851		2183		
uents in lion	<u>T D S</u> E vap 180°C E vap 105°C Camputed		710	852	780	986 910	896	861	11218	10329	16580	14178	9673	8522	3703	3116	
constituents per million	Sili- co SiO ₂		44	22		27	27		11		18		21		18		
Mineral c parts p	Baron B		0 • 74	0.65		0.73	0.75		0•96		1.24		0 • 70		0•46		
2	Fluo- ride F		0•4	0.4		0•6	0.6		0•4		0.1		0•4		0.7		
	N trate NO3		1•0 0•02	1.2	0.02	3.6 0.06	•		8.7		•0		•0		0.6	10.0	
n million ce value	Chlo- ride Cl	10300	37 1.04	36	1.02	48 1 • 35 9	44	6	5691	86	7757	68	4751	000 000 000	1569	44° 20	
millio per eocton	Sulfate S04	CLARA-CALLEGUAS HYDRO UNIT U0300	253 5.27	341	7.10	434 9.04 61		61	875	1001	1178	10	793	11	403	8.39	
len t	Bicar - banate MCO3	нурко	325 5•33	268	4 • 39 35	260 4.26	247	30	128	1	169	2. 1	159	2 2	183	3.00	
parts equiva percen	Carbon - ote CO3	LEGUAS	0	0		0	0		0		0		0		0		
Ē	- soto4 sium X	RA-CAI	0.15	+	0.10	4 0•10		6T * 0	23	۶ <b>۵</b> •0	30	11 • 0	21	40.0	80	0•20	
constituents	Sodium No	SANTA CLA	100	89	3.87 30	96 4.17 29		4.09	2380	103.48 57	3300	143.48	865	37•61 24	274	11.91 21	
Mineral co	Magne, stum Mag	SA U03A1	. 30 2.47	21 34	2.80 22	4 60 24	6	3.61	450	37.01 20	508	41.78 17	542	44 • 57 29	189	15.54	
×	Colcium	UO3AO	93 4•64	40	5°99 47	108 5.39	126	6 • 29 4 6	826	41•22 23	1303	65•02 26	1450	72.36	563	28•09 50	
Specific conduct-	unce (micro - mhos at 25°C)		1064	1100		1210	1180		13200		21000		9680		4780		
	Hd	SUBUNIT	7.7	0 * 8		8.1	7.6		7.5		7.0		7.6		7 ° 7		
Temp	when sampled in°F	<u>ہ</u>	oż	1		ł			64		68		66		65		
State well	led	OXNARD PLAIN HYDRO S OXNARD PLAIN HYDRO	1N/21W-30A 2 5 7-24-63	1N/21W-31A 1 S		1N/22W+15B 3 S 12-26-63	1N/22W-18E 1 S	6-13-63	1N/22W-19H 1 S	4-26-63	1N/22W-20E 1 S	8-16-63	1N/22W-20R 1 S	5-8-63	1N/22W-21L 1 S	5- 7-63	

### TABLE E-2 MINERAL ANALYSES OF GROUND WATER 1963 LOS ANGELES DRAINAGE PROVINCE (U)

# TABLE E-2 MINERAL ANALYSES OF GROUND WATER 1963 LOS ANGELES DRAINAGE PROVINCE (U)

	Total hordness a s	Co CO3		569	534	466	ۍ ا د
Ē	C hordne						
ents ion	T D S Evap 180°C Evap 105°C	Computed		1877 1728	984 921	810 796	
constituents per million		2 C		6	52	29	
		<u>ñ</u>		23			1
Mineral parts	Boron	8		0.2	0.73	0.20	
	Fluo- ride	-		0 • 4	9 • 0	0 • 5	1
	N . Trate	803		6.8 0.11	•	12. 0.19 1	
ຍ		_					
million e valu	Chio -	U0300		748 21.09 77	106 2.99 20	53 1.49 11	1.61
millior per eactanc	Sulfate	S04		170 3.54 13	384 7.999 54	283 5 89 45	1
parts per equivalents percent re	<u> </u>	^{нсоз}   S нүркс		0	238 3.90 26	336 5+51 42	4 10 10 10 10 10 10 10 10 10 10 10 10 10
por eq.	Carbon - ate	LLEGUA.		75 2.50	0	0	0
Ē	, % E	ARA-CA	ED)	43 1.10 3	4 0•10 1	0.13 1	1
constituents	Sodium	No     K     CO3     HCO3     S04     C1       SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	CONTINU	448 19•48 61	100 4.35 29	86 3•74 28	1
Mineral co	, a c c	[™] a	UO3A1 (CONTINUED)	0	46 3 • 78 25	3°13 24	
Ŵ	E	°u	U03A0 L	228 11•38 36	138 6.89 46	124 6.19 47	
Specific conduct-		at 25°C)		3710	1470	1135	1265
	Hd		BAREP	11.7	0 * 8	7 • 8	Ν Φ
Temp	when sompled in °F		PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	64 1	1	1	1
-			HYDF AYDF	S S	s 1	ŝ	4
well	mpled		AIN	1	3320	22R 3	3 2 F D
State well	Date sampled		OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBARE	1N/22W-21L 4-26-63	1N/22W-22C 1 6-18-63	1N/22W-22R 2-26-63	1N/22W-26D 4 2-26-63
	°		NXO	1N 4	IN 0	1N 2	Z N 1

	Tatal hardness as CaCO3		450	689	757	
constituents in per million	TDS Evop 180°C Tatal Evop 180°C as Computed CaCO3		820 800	1310 1213	1428 1345	
constituent per million	5:11- co S:02		37	25	27	
Mineral parts p	Boran B		0.42	0 • 80	0 • 78	
	Fluo- ride F		0 • 7	0 8	0 • 4	
	NI - Irale NO 3		0.01	3.5 0.06	15. 0.24	
million te volue	Chla - ride Cl	00300	38 1.07 8	82 2.31 12	74 2•09 10	
millior per eoctono	Sulfate 504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	329 6.85 54	593 12.35 64	614 12.78 61	
parts per equivalents percent r	Bicar - banate HCO3	Н Т В К	295 4.84 38	288 4•72 24	360 5 • 90 28	
par per	Carbon - ate CO3	LLEGUAS	0	0	0	
Ē	Potos - sium K	ARA-CA	3 0.08 1	4 0.10 1	0.08	
constituents	Sadiu <del>R</del> N a	ANTA CL	86 3•74 29	120 5•22 27	145 6•30 29	
Mineral co	Magne- sium Mg	5 U03B1	31 2•55 20	52 4.28 22	22 1.81 8	
2	Calcium Co	U03B0	129 6•44 50	190 9.48 50	267 13•32 62	
Specific conduct-	(micro- mhos at 25°C)	SUBUNIT HYDRO SUBAREA	11'48	1530	1800	
	Н	SUBUNIT HYDRO SI	7 • 6	7 • 7	7 • 5	
Temp	sampled in°F		1.	1	1	
State well number	Date sampled	SANTA PAULA HYDRO SANTA PAULA PAULA	3N/21W- 9R 3 S 1-16-63	3N/21W-16K 1 S 9-29-63	3N/22W-36H 1 S 8- 1-63	

L ANALYSES OF GROUND WATE

### MINERAL ANALYSES OF GROUND WATER 1963 LOS ANGELES DRAINAGE PROVINCE (U)

L N	S Toto!	Evap 180°C hardness Evop 105°C as Computed CoCO3		1244 799	1182	920 361	897	446 241	0 7 7	222 110	216	1010 511	964	555 177	558	 
Mineral canstituents parts per miltion				9	11	9		2	*	42	2	25 10	6	5	5	 
al car ts per	-11- 211-	c a S + 0 2		0.10 2		0.20		• 00 2		• 00 4		1.20 2		2.00 2		 
Mineral parts	Boron															 
L	Fluo	r i de	1	0.9	~ +	0.2		0 • 3		0.7		0 • 2		1 • 3		
	ź	trote NO3		45.	0.73	3 • 3	0°02	0.6	10.0	14.	•	0.5		2.6	0•04	
million per million ctance value	Chlo	c t C t	U0300	74	2.09	23	0°07	20	0 80	18	16	133	23	100	0.31 4	
0	Sulfate	50 4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300		9.56 49	471	9°81 69		2.600	10	1200	310	¢00	199	4 • 14 4 7	
parts per equivalents percent re	Bicor -	bonole HCO3	S HYDF	442	7.24	220	3 <b>•61</b> 26	250	4.e 10 56	134	02.2	368	37	261	4•∠8 48	
per	Carbon -	01e CO 3	ALLEGUA	0		0		0		0		0		0		 
.c	Potos -	E N S	ARA-C/		0 • 08		0.10	ς α	2	1	1	40	1	2	0.05	
constituents	Sodium	o N	ANTA CL	85	3.70	153	6 • 6 5 4 8	58 58	2007	24	. 32 32	135	36	120	5 • 22	
Mineral co	Mogne.	E M	S UO3E1	74	6.09 31	4,1	3 • 37 24	13	14 14		15	47	24	6	0.74	
2	Colcium	C o		198	9.88 50	77	3.84 28	75	5.0	34	1°/0	127	0 • 0 • 0	56	2 • 79	
Specific conduct-	ance - (micro -	mhos at 25°C)	R HYDRO SUBUNITU03E0 RO SUBAREA	1635		1260		686		327		1475		833		
	Hď		IYDRO SUBAR	7 • 7		7•9		8 • 2		7 • 5		7.5		7 • 8		
Temp	when	in °F		1		76				1				1		
State well number		Date sampled	UPPER SANTA CLARA R HYDRO SU EASTERN HYDRO SUJAREA	4N/16W-28A 1 S	1-11-63	4N/16W-33L 1 S	R-13-63	4N/17W- 4A 1 S	60-11-1	5N/17W-34P 1 S	60-11-1	6N/16W-34B 1 S	60-17-0	8N/20W-19M 1 S	1- 5-63	

E-2	
ш	1
BL	ļ
TAE	
	1

### MINERAL AMALYSES OF GROUND WATER 1963 LOS ANGELES DRAIMAGE PROVINCE (U)

| T      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | -                                                       |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
|        | hardness<br>as<br>Ca C O 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 753                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
|        | Evap 180°C<br>Evap 105°C<br>Camputed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4<br>0<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1210                                                                                                                    | 1244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
|        | 5:02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | -                                                       |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
|        | ride<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0•4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0•2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 • 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0•5                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | 1                                                       |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.<br>0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.<br>0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ŋ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.7                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22<br>0.62<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50<br>1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66<br>1 • 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | æ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 134                                                                                                                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
|        | 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 600<br>12.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 518                                                                                                                     | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S HYDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 117<br>1•92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 296<br>4.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 571<br>9.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 361                                                                                                                     | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | -                                                       |
|        | ate<br>CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ILLEGUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
|        | E T S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ARA-CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C                                                                                                                       | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
|        | D N D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ANTA CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27<br>1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54<br>2 • 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 145<br>6•30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 124                                                                                                                     | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
|        | анба<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U03F4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30<br>2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30<br>U03F8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104<br>8.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110                                                                                                                     | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | |
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
|        | C o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3F 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26<br>1•30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 182<br>9.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | с<br>Ю                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120                                                                                                                     | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
| ance - | mhos<br>at 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UNIT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SUBARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SUBARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1686                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
| Н      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D SUB<br>HYDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | нурго                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | нурго                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7•2                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
| when   | sompled<br>in ° F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | POSAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
|        | Date sompled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CALLEGUAS-CONEJO<br>EAST LAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3N/19W-29E 3 5<br>7-10-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONEJO VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IN/20W-15R 3 S<br>8- 1-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | THOUSAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1N/19W- 2L 1 5<br>10- 2-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1N/19W-14C 3 S                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | | | | | | | | | | | | | | | |
                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         |
|        | when pH (micro-control of the control of the contro | when pH and the contract when pH and the parase for the phone p | when<br>sampled<br>mos         PH         DH         Conce<br>mos         Sodium         Poiss-<br>sium         Corbon         Bicor-<br>binote         Nicor         Nico-<br>sium         Nico-<br>sium         Nicor         Nico-<br>sium         Nicor         Nicor | H         Once<br>(micro-<br>mbos)         Concum<br>sum<br>sum         Mogne-<br>sum         Sodium<br>sum         Peros-<br>sum         Conson-<br>sum         Sum         Sodium<br>sum         Peros-<br>sum         Sum         Sodium<br>sum         Sodium<br>sum | H         Conce<br>micro-<br>micro-<br>mbos         Restor-<br>sium<br>sium         Poios-<br>sium<br>sium         Carbon-<br>sium<br>sium         Restor-<br>sium         Suite<br>sium         Carbon-<br>sium         Ni -<br>sium         Restor-<br>sium         Suite<br>sium         Carbon-<br>sium         Restor-<br>sium         Suite<br>sium         Carbon-<br>sium         Ni -<br>sium         Suite<br>sium         Carbon-<br>sium         Ni -<br>sium         Suite<br>sium         Suite<br>sium <th< td=""><td>H         Once<br/>micro-<br/>micro-<br/>mbos         Colline<br/>sium<br/>sium         Perios-<br/>oris         Carbon-<br/>sium         Bicon-<br/>oris         Suitoite<br/>sium         Carbon-<br/>oris         Ni -<br/>ride         Riun-<br/>ride         Roon         Siur-<br/>co-<br/>sium         Solo-<br/>oris         Ni -<br/>ride         Fius-<br/>ride         Roon         Siur-<br/>co-<br/>sium         Solo-<br/>oris         Solo-<br/>co-<br/>sium         Ni -<br/>co-<br/>sium         Fius-<br/>co-<br/>sium         Roon         Siur-<br/>co-<br/>sium         Solo-<br/>co-<br/>sium         Solo-<br/>co-<br/>co-<br/>sium         Solo-<br/>co-<br/>co-<br/>co-<br/>co-<br/>co-<br/>co-<br/>co-<br/>co-<br/>co-<br/>c</td><td>H         Once<br/>mbos<br/>mbos<br/>mbos<br/>sium         Poins-<br/>sium<br/>sium         Corbon-<br/>sium<br/>sium         Bicor<br/>sium<br/>sium         Sulfate<br/>sium<br/>sium         Poins-<br/>sium<br/>sium         Sulfate<br/>sium<br/>sium         Poins-<br/>sium<br/>sium         Sulfate<br/>sium<br/>sium         Poins-<br/>sium<br/>sium         Sulfate<br/>sium<br/>sium         Poins-<br/>sium<br/>sium         Sulfate<br/>sium         Poins-<br/>sium<br/>sium         Sulfate<br/>sium         Poins-<br/>sium<br/>sium         Sulfate<br/>sium         Poins-<br/>sium<br/>sium         Sulfate<br/>sium         Poins-<br/>sium<br/>sium         Sulfate<br/>sium         Poins-<br/>sium<br/>sium         Sulfate<br/>sium         Poins-<br/>sium         Sulfate<br/>sium         Poins-<br/>sium<br/>sium         Sulfate<br/>sium         Solution<br/>side         Solutiotion<br/>side         Solution<br/>side</td><td>H         (micce<br/>micce<br/>mbos         Concernance<br/>sium         Ricor<br/>sium         Suitore<br/>sium         Concernance<br/>sium         Ricor<br/>sium         Suitore<br/>sium         Concernance<br/>sium         Suitore<br/>sium         Concernance<br/>sium         Suitore<br/>sium         Suitore</td><td>H         (micro-<br/>micro<br/>mbos         Concurs<br/>sum<br/>sum<br/>sum<br/>sum<br/>sum<br/>sum<br/>sum<br/>sum<br/>sum<br/>su</td><td>H         (micro-<br/>micro         Concurs<br/>and<br/>anota         No         Consol         Consol         Suitor         Consol         Solution         <th< th="">         Solutit         Solutit<td>H         (micro-<br/>micro<br/>mbos)<br/>mbos         Contrum<br/>stum         Mogne-<br/>stum         Sodium<br/>stum         Peros-<br/>stum         Carbon-<br/>stum         Sulfote<br/>stum         Conton-<br/>stum         Sulfote<br/>stum         Conton-<br/>stum         Sulfote<br/>stum         Conton-<br/>stum         Sulfote<br/>stum         Conton-<br/>stum         Sulfote<br/>stum         No         Stum         Solutions         Solutitetee         Solutiteee         Solutions</td><td>H         (micro-<br/>micro<br/>sium<br/>sium<br/>off         Sodium<br/>off         Parios-<br/>off         Corbon-<br/>sium<br/>off         Suitore<br/>off         Suitore<br/>sium<br/>off         Sodium<br/>off         Parios-<br/>sium<br/>off         Corbon-<br/>sium<br/>off         Suitore<br/>off         Suitore<br/>sium<br/>off         Suitore<br/>off         Suitore<br/>sium<br/>off         Suitore<br/>off         Suitore<br/>sium<br/>off         Suitore<br/>off         Suitore<br/>sold         Suitore<br/>sold</td><td>H         Marce<br/>mbos<br/>of<br/>of<br/>sium         Marce<br/>sium<br/>sium         Sodium<br/>sium<br/>of<br/>sium         Perosi-<br/>of<br/>sium         Corbon-<br/>of<br/>sium         Bicor-<br/>of<br/>sium         Surloie<br/>of<br/>sium         Ni-<br/>sium         Fiuo-<br/>corbon         Boron<br/>sium         Surloie<br/>sium         Fiuo-<br/>sium         Surloie<br/>sium         Surloie<br/>sium         Fiuo-<br/>sium         Surloie<br/>sium         Fiuo-<br/>sium         Surloie<br/>sium         Fiuo-<br/>sium         Surloie<br/>sium         Fiuo-<br/>sium         Surloie<br/>sium         Surloie<br/>sium         Surloie<br/>sium         Sur</td><td>H (micro location Mogne Solum Virtua Mogne Solum Variation (100 Mos location Virtua Variation) (100 Mos location) (100 Mos</td><td>H         (micro-<br/>micro-<br/>al 25°C)         Conturn<br/>way         Parane<br/>sum         Surface<br/>basers         Contact<br/>sum         Num         Parane<br/>sum         Surface<br/>sum         Contact<br/>sum         Num         Parane<br/>sum         Surface<br/>sum         Contact<br/>sum         Num         Parane<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sufface         Surface         Surf</td><td>H $\left( \begin{array}{c} 0.006\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.00$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></th<></td></th<> | H         Once<br>micro-<br>micro-<br>mbos         Colline<br>sium<br>sium         Perios-<br>oris         Carbon-<br>sium         Bicon-<br>oris         Suitoite<br>sium         Carbon-<br>oris         Ni -<br>ride         Riun-<br>ride         Roon         Siur-<br>co-<br>sium         Solo-<br>oris         Ni -<br>ride         Fius-<br>ride         Roon         Siur-<br>co-<br>sium         Solo-<br>oris         Solo-<br>co-<br>sium         Ni -<br>co-<br>sium         Fius-<br>co-<br>sium         Roon         Siur-<br>co-<br>sium         Solo-<br>co-<br>sium         Solo-<br>co-<br>co-<br>sium         Solo-<br>co-<br>co-<br>co-<br>co-<br>co-<br>co-<br>co-<br>co-<br>co-<br>c | H         Once<br>mbos<br>mbos<br>mbos<br>sium         Poins-<br>sium<br>sium         Corbon-<br>sium<br>sium         Bicor<br>sium<br>sium         Sulfate<br>sium<br>sium         Poins-<br>sium<br>sium         Sulfate<br>sium<br>sium         Poins-<br>sium<br>sium         Sulfate<br>sium<br>sium         Poins-<br>sium<br>sium         Sulfate<br>sium<br>sium         Poins-<br>sium<br>sium         Sulfate<br>sium         Poins-<br>sium<br>sium         Sulfate<br>sium         Poins-<br>sium<br>sium         Sulfate<br>sium         Poins-<br>sium<br>sium         Sulfate<br>sium         Poins-<br>sium<br>sium         Sulfate<br>sium         Poins-<br>sium<br>sium         Sulfate<br>sium         Poins-<br>sium         Sulfate<br>sium         Poins-<br>sium<br>sium         Sulfate<br>sium         Solution<br>side         Solutiotion<br>side         Solution<br>side | H         (micce<br>micce<br>mbos         Concernance<br>sium         Ricor<br>sium         Suitore<br>sium         Concernance<br>sium         Ricor<br>sium         Suitore<br>sium         Concernance<br>sium         Suitore<br>sium         Concernance<br>sium         Suitore<br>sium         Suitore | H         (micro-<br>micro<br>mbos         Concurs<br>sum<br>sum<br>sum<br>sum<br>sum<br>sum<br>sum<br>sum<br>sum<br>su | H         (micro-<br>micro         Concurs<br>and<br>anota         No         Consol         Consol         Suitor         Consol         Solution         Solution <th< th="">         Solutit         Solutit<td>H         (micro-<br/>micro<br/>mbos)<br/>mbos         Contrum<br/>stum         Mogne-<br/>stum         Sodium<br/>stum         Peros-<br/>stum         Carbon-<br/>stum         Sulfote<br/>stum         Conton-<br/>stum         Sulfote<br/>stum         Conton-<br/>stum         Sulfote<br/>stum         Conton-<br/>stum         Sulfote<br/>stum         Conton-<br/>stum         Sulfote<br/>stum         No         Stum         Solutions         Solutitetee         Solutiteee         Solutions</td><td>H         (micro-<br/>micro<br/>sium<br/>sium<br/>off         Sodium<br/>off         Parios-<br/>off         Corbon-<br/>sium<br/>off         Suitore<br/>off         Suitore<br/>sium<br/>off         Sodium<br/>off         Parios-<br/>sium<br/>off         Corbon-<br/>sium<br/>off         Suitore<br/>off         Suitore<br/>sium<br/>off         Suitore<br/>off         Suitore<br/>sium<br/>off         Suitore<br/>off         Suitore<br/>sium<br/>off         Suitore<br/>off         Suitore<br/>sold         Suitore<br/>sold</td><td>H         Marce<br/>mbos<br/>of<br/>of<br/>sium         Marce<br/>sium<br/>sium         Sodium<br/>sium<br/>of<br/>sium         Perosi-<br/>of<br/>sium         Corbon-<br/>of<br/>sium         Bicor-<br/>of<br/>sium         Surloie<br/>of<br/>sium         Ni-<br/>sium         Fiuo-<br/>corbon         Boron<br/>sium         Surloie<br/>sium         Fiuo-<br/>sium         Surloie<br/>sium         Surloie<br/>sium         Fiuo-<br/>sium         Surloie<br/>sium         Fiuo-<br/>sium         Surloie<br/>sium         Fiuo-<br/>sium         Surloie<br/>sium         Fiuo-<br/>sium         Surloie<br/>sium         Surloie<br/>sium         Surloie<br/>sium         Sur</td><td>H (micro location Mogne Solum Virtua Mogne Solum Variation (100 Mos location Virtua Variation) (100 Mos location) (100 Mos</td><td>H         (micro-<br/>micro-<br/>al 25°C)         Conturn<br/>way         Parane<br/>sum         Surface<br/>basers         Contact<br/>sum         Num         Parane<br/>sum         Surface<br/>sum         Contact<br/>sum         Num         Parane<br/>sum         Surface<br/>sum         Contact<br/>sum         Num         Parane<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sum         Surface<br/>sufface         Surface         Surf</td><td>H $\left( \begin{array}{c} 0.006\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.00$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></th<> | H         (micro-<br>micro<br>mbos)<br>mbos         Contrum<br>stum         Mogne-<br>stum         Sodium<br>stum         Peros-<br>stum         Carbon-<br>stum         Sulfote<br>stum         Conton-<br>stum         Sulfote<br>stum         Conton-<br>stum         Sulfote<br>stum         Conton-<br>stum         Sulfote<br>stum         Conton-<br>stum         Sulfote<br>stum         No         Stum         Solutions         Solutitetee         Solutiteee         Solutions | H         (micro-<br>micro<br>sium<br>sium<br>off         Sodium<br>off         Parios-<br>off         Corbon-<br>sium<br>off         Suitore<br>off         Suitore<br>sium<br>off         Sodium<br>off         Parios-<br>sium<br>off         Corbon-<br>sium<br>off         Suitore<br>off         Suitore<br>sium<br>off         Suitore<br>off         Suitore<br>sium<br>off         Suitore<br>off         Suitore<br>sium<br>off         Suitore<br>off         Suitore<br>sold         Suitore<br>sold | H         Marce<br>mbos<br>of<br>of<br>sium         Marce<br>sium<br>sium         Sodium<br>sium<br>of<br>sium         Perosi-<br>of<br>sium         Corbon-<br>of<br>sium         Bicor-<br>of<br>sium         Surloie<br>of<br>sium         Ni-<br>sium         Fiuo-<br>corbon         Boron<br>sium         Surloie<br>sium         Fiuo-<br>sium         Surloie<br>sium         Surloie<br>sium         Fiuo-<br>sium         Surloie<br>sium         Fiuo-<br>sium         Surloie<br>sium         Fiuo-<br>sium         Surloie<br>sium         Fiuo-<br>sium         Surloie<br>sium         Surloie<br>sium         Surloie<br>sium         Sur | H (micro location Mogne Solum Virtua Mogne Solum Variation (100 Mos location Virtua Variation) (100 Mos location) (100 Mos | H         (micro-<br>micro-<br>al 25°C)         Conturn<br>way         Parane<br>sum         Surface<br>basers         Contact<br>sum         Num         Parane<br>sum         Surface<br>sum         Contact<br>sum         Num         Parane<br>sum         Surface<br>sum         Contact<br>sum         Num         Parane<br>sum         Surface<br>sum         Surface<br>sum         Surface<br>sum         Surface<br>sum         Surface<br>sum         Surface<br>sum         Surface<br>sum         Surface<br>sum         Surface<br>sufface         Surface         Surf | H $\left( \begin{array}{c} 0.006\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.00$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

# TABLE E-2 MINERAL ANALYSES OF GROUND WATER 1963 LOS ANGELES DRAINAGE PROVINCE (U)

State well number	Temp. when		Specific conduct- ance	2	Mineral co	constituents	.=	Pod Pequ	parts per equivalents percent r	millior per eactanc	million e value			Mineral constituents parts per miltion	constituent per million	lents in lion	
Date sampled	sampled In ° F	H	(micro- mhos at 25°C)	Colcium C o	Magne- sium Mg	Sodiu T	Potos - sium K	Corbon - ote CO3	Bicar - bonote HCO3	Sulfate S0.4	Chlo- ride Cl	NI - trote NO 3	Fluo- ride F	Boron B	Sili- co SiO ₂ C	T D S Evop 180°C Evop 105°C Computed	Totol hordness as CoCO3
COASTAL PL OF LA		IYDRO RO SU	CO HYDRO SUBUNITU05A0 HYDRO SUBAREA		L UOSA2	A SAN	GABRIEL	RIVER	R HYDRC	HYDRO UNIT U0500	10500						
35/13W-29G 3 S 10-23-63	90. 80	7 • 8	1180	98 4.89 41	30 2.47 21	102 4.43 37	0.13 1	0	198 3•25 27	111 2.31 19	227 6.40 54	•	0 • 2	0•30	20	740 691	368
35/13W-31M 1 5 10-24-63	70	8 • 1	510	47 2 • 35 44	11 0.90 17	45 1•96 37	0•08 2	0	226 3.70 71	43 0.90 17	0.59 11	•	0.2	0.18	23	292 304	163
35/14W-22R 2 5 10-28-63	69	7•6	1400	111 5.54 37	56 4.61 31	107 4.65 31	6 0.15 1	0	253 4.15 28	47 0.98 7	340 9.59 65	•	0•2	0.35	16	1044 808	508
35/14W-25K 4 5 10-25-63	70	7 • 8	710	70 3•49 48	17 1.40	2 53 32	0.08	0	226 3.70 51	1.23 17	81 2,28 32	° 0	0•2	0.14	22	434 416	245
35/14W-27C 1 5 10-28-63	68	7 • 7	1040	96 4. 79 44	2•22 2•22 20	86 3•74 34	0•13 1	0	221 3•62 34	56 1.17 11	208 5 • 87 55	° 0	0 • 5	0.18	19	738 606	351
35/14W-30H 2 S 10-23-63	72	8 • 4	1040	74 3•69 35	2.71 26	90 3.91 37	0.15 1	0.50	202 3 • 31 32	38 0.79 8	201 5.67 55	•	0•2	0.20	22	658 579	320
45/14W- 9Q 1 S 10-28-63	73	7 • 7	880	33 1•65 18	12 0.99 11	148 6•44 70	0.13 1	0	290 4.75 53	0 • 04	149 4.20 47	° 0	0•2	0.55	24	500 516	132
45/14W-16L 2 S 10-28-63	74	ຕ •	760	2•00 25	0.99 13	110 4.•78 61	0.13 2	4 0•13 2	281 4.61 59	1 0•02	106 2•99 39	ô	0 • 2	0.30	29	452	150

	WA7
E E-2	GROUND
	9 E
TABL	NALYSES
	- 24

### MINERAL ANALYSES OF GROUND WATER 1963 LOS ANGELES DRAINAGE PROVINCE (U)

	Totol hordness os CoCO3		277	217	238	163	150	145	
č	0.0		4 6	384 2	436 2	314 ]	236	242	
tuents	TDS Evop 180° Evop 105° Computed		45	m m	m t	m m	5 5	N N	
constituent per million	5:11- co S:02		19	22	19	19	11	13	
Mineral constituents parts per million	Boron B		0.20	0.18	0 • 02	0.15	0.18	0.18	
	Fluo- ride F		0 • 2	0 • 6	0 • 2	0 • 2	0 • 4	0 • 2	
	Ni - trote NO 3		3.7 0.06 1	•	7.3 0.12 2	• 0	° 0	•	
million e volue	Chlo- ride Cf	10500	50 1.41 18	28 0.79 12	36 1.02 15	22 0.62 12	11 0.31 7	13 0.37 8	
millior per	Sulfote S04	RIVER HYDRO UNIT U0500	109 2.27 29	84 1.75 27	93 1•94 29	46 0•96 18	22 0.46 11	36 0.75 16	
ports per equivolents percent re	Bicar - bonote HCO3	R HYDRO	256 4.20 53	235 3•85 60	221 3•62 54	232 3•80 71	211 3.46 80	211 3•46 75	
por	Corbon - ote CO3		0	0	0	0	0.07 2	0.03 1	
.c	Potos - stum K	GABRIEL	4 0.10 1	3 0.08 1	4 0.10 1	4 0.10 2	0.08	0 • 0 8 2	
constituents	E nipo S	A SAN	50 2.17 28	50 2•17 33	45 1•96 29	46 2 • 00 37	30 1•30 30	36 1.57 35	
Minerol co	- eu bow En w W b	L UOSAS	3-04 3-04	12 0.999 15	16 1,922 19	19 1•56 29	11 0.90 21	6 0.49 11	
×	E • · · · · · · · · · · · · · · · · · ·	]	2 • 50 3 2	67 3.34 51	3 69 569 50	34 1•70 32	42 2•10 48	48 2.40 53	
Specific conduct-	ance (micro - mhos at 25°C)	CO HYDRO SUBUNITU05A0 DRO SUBAREA	7'30	610	600	470	390	450	
	Н	DRO	7.9	0 • 8	7.7	8 <b>a</b> 1	ຕ ອ ແ	0 0 0	
Temp	when sampled in°F	CO HY DRO S	\$ \$	70	l	72	1	69	
			ۍ د	1 s	1 s	n N	N N	1 S	
State well	Date sompled	DASTAL PL OF LA CO HYDRO SUI CENTRAL HYDRO SUBAREA		25/13W+12C 1 3- 1-63	25/13W-28H 1 10-11-63	35/13W-20H		45/12W-10G 1 11-21-63	
State well number	Date somple	COASTAL PL OF LA COASTAL PL OF LA	8	25/13W+12C 3- 1-63	25/13W-28H 10-11-63	35/13W-20H 11-20-63	45/12W-10A 11-21-63	45/12W-10G 11-21-63	

### MINERAL ANALYSES OF GROUND WATER 1963 LOS ANGELES DRAINAGE PROVINCE (U)

	1	1	1		_			_				_				 _	_	
	Totol hordness os CoCO3		335	363		172		286		233		401		482				
tuents in Ition	T D S T 0101 Evop 180°C hardness Evop 105°C o s Camputed Co C 03		514	414	628	240	235	418	359	374	348	632	548	814	745			
constituent per miltion	5:11- 5:02		12	11		17		11		16		13		14				
Mineral constituents parts per million	Boron		0.05	0.05		0.08		0.03		• 00		0.11		0 • 03				
	Fluo ride F		0.2	0 • 1		0•6		0.1		0•2		0 • 2		0 • 2				
	NI = trote NO3		11• 0•18	59.	0 • 95 9	14.00.23	9	33°	•	16.	47 • C	11.	0.18	35.	0.56			
million e value	Chio - ride Ci	U0500	101 2.85	78	2.20	8	1.0	31	14	28	13	53	1•49 16	71	2.00			
millio per eactanc	Sulfate S04	RIVER HYDRO UNIT U0500	42 0.87	163	9 9 9 9 9 9 9 9	19	10	62	21	65	1 • 3 5 2 3	171	2°20 200 200	260	5•41 45			
parts per equivalents percent r	Bicor - bonote HCO3	R HYDR	214 3.51	226	3.70	198	64	210	- - - - - - - - - - - - - - - - - - -	216	5 0 4	253	4 • 1 5	254	4.16 34			
p e o	Corbon - ote CO 3	1	0	0		0		0		0		0		0				
E S	Potos - stura K	GABRIEL	4 0.10	- 9	0.15	20=05		4	0.10	-	0.10	5	د ۱۰ ۱	9	0.15			
constituents	Sodium No	A SAN	16 0.70	20L	3。04 29	15 0.65	16	12	0 00	26	1 • 1 <i>5</i>	29	1•26 13	55	2.39			
Mineral co	Miogne - sium Mig	L UO5D1	1.40	24	1.97 19	11 0.90	22	1.4.6	23	10	0.82 14	30	26	22	1.81			
×	Colcium Co		106 5.29	106	5.29 51	51 2.54	61	85	67	77	5 e a t	111	50°	157	1 • 83 64			
Specific conduct- ance	(micro - mhos at 25°C)	JBUNIT I	750	940		370		580		540		855		1050				
	H d	DRO SI EL HYI	7 • 7	7.6		2 • 2		7 • 8		7.7		7.6		7.9				
Temp	ampled in ° F	EY HYE SABRIE	67	1		62				66		1		1		 		
		ALL	Ś	Ś		Ś		S		S		S		S				
State well number	Dote sampled	SAN GABRIEL VALLEY HYDRO SUBUNIT UO5DO MAIN SAN GABRIEL HYDRO SUBAREA	15/10W- 7A 6 7-26-63	1 N01-M01/S1	10-10-63	1S/11W-10F 1 10-11-63		1S/11W-14M 1	1	1S/11W-26K 1	60-11-01	15/11W-33N 7	50-C7-0	1S/11W-33P 1	10-11-63			
	0	SAN	15/ 7-	15/	10-	10-10-	9	15/		15/	-01	15/	0	15/	10			

R 1963	Ś
WATE	INCE
OUND	DRAINAGE PROVINCE
F GR	IAGE
	RAIN
ANALYS	LAHONTAN D
MINERAL	LAH
	MINERAL ANALYSES OF GROUND WATER 1963

	1																			
Tatal hordness as	Co C 03		77		55		272		14		42		173		106		106			
T D S Evop 180°C Evop 105°C			142	145	158	171	434	428	242	236	168	177	412	386	238	247	250	238		
Sula- co	5:02		20		21		21		16		17		26		27		17			
<u>د</u>			0•06		0•08		0•20		0.78		0.08		0•63		0.53		0.10			
Fluo-	u		0 • 2		0•2		0•1		1.6		0 • 2		0.4		0•1		0•2			_
Ni - trote	N03		1.8 0.03	1	1.9	1	29.	0.4	•0		17.	0.27	11.	0•18 0	9.3	0•15	4.9	0 0 0		
C h lo - ride		M2600	0.08	ŝ	5		44	1.64	10	6400	11	0.31	67	1.89	13	6 6	14	10		
Sulfate	504	-	12 0.25	11	19	15	36	10	15	- 00 - -	22	0.46	50	1.04	31	0.65 16	44	1.00		
Bicar - bonate	нсоз		120 1.97	85	128	62	311	29.10	177	75	101	1•66 61	207	3.34	171	2.80	145	62 62		
Corban - ate	C 0 3	UNIT	0		0		0		12	10	0		0		0		0			
S E	×		0.05	2	0.02		2 2	1	0		-	0.03	p-4	60°0	2	0.05	200	0.0 0		
Sodium	°z	NTELOPE	19 0.83	34	38	65	51	2•22	89	- 0° C	43	1.87 68	11	3.09	41	1•78 45	42	1 = 83 46		
Mogne - sium	6 W		0 • 33	14	0		26	2 • 14 28		0 N 0	1	0°0	19	1•56 24	5	0.41	5	10 10		
Colcium	ů		24 1.20	50	22	010	66	2. 2. 2. 4. 2. 6.	0 tr	0 • •	15	0.75	38	1.90	34	1.70 43	34	1• / 0 43		
ance (micro - mhos	at 25°C)	DRO SUB	240		270		700		380		280		630		400		390			
Hd		F Y HY	8•1		8 a 1		7.5		8 • 9		8 • 2		7.8		8.1		8.1			
when sampled in ° F		VALLE	ł		73		8		1		1		72		74		1			
led		ANTELOPE HYDRO SI LANCASTER	7N/11W-23N 1 S 7-19-63		7N/12W-34E 1 S	0010011	7N/13W- 7J 1 S	5-21-63	8N/IIW-ZIR 1 S	0010011	8N/12W- 9B 1 S	7-31-63	8N/13W-27P 2 S	6- 4-63	8N/14W-11G 1 S	7-31-63	9N/13W-23E 1 S	6- 6-63		
	when pH 00.00 sompled T (micro-Colcium Mogne-Sodium Poios-Corbon-Bicor-Sulfate Chlo-Ni-Fiuo-Baron Silt-IOS in eF trate trate Cecon Sium ote bonate trate trate trate cologe	when PH Once Colcium Magne-Sadium Polas-Carbon-Bicar-Sulfate Chlo-Ni-Fiuo-Baran Siir IOS sompled mhos sium Magne-Sadium Polas-Carbon-Bicar-Sulfate Chlo-Ni-Fiuo-Baran Siir IOS in ⁶ F at 25°C) Co Mag No K CO3 HCO3 SO4 C1 NO3 F B SiO2 Computed	when sompled in °F     PH fmicro- in °F     Once column     No of a sum sum     Partor     Buco- sum     Suifate sum     Calo - sum     Nu - sum     Suifate sum     Suifater     Suifate sum     Suifate sum     S	PH         Once (micro - mos         Colum         Poiss - sum         Corbon - sum         Bicor - sum         Suite         Chio - sum         Ni - sum         Fiuo - sum         Boron         Suite         Tobal sum           (micro - mos         colum         wo sum         ore sum         benote ore way         benote ride         benote sum         corbon - sum         benote sum         corbon - sum         c	PH         Once (mice mhos         Colum sum of 25°C)         Poiss- sum sum sum sum sum No         Corbon- sum sum x         Bicor- suite sum sum sum sum sum sum sum         Bicor- suite sum sum sum sum sum sum sum sum sum sum	PH         Once (mhos)         Colum         Poise- sum         Corbon- sum         Bicor- sum         Suite         Chio- sum         Ni - sum         Fuo- sum         Bicor- sum         Suite         Chio- sum         Ni - sum         Fuo- sum         Bicor- sum         Suite         Colo         Bicor- sum         Suite         Colo         Bicor- sum         Suite         Chio- sum         Ni - sum         Fuo- sum         Suite         Suite         Colo         Colo         Colo         Suite         Colo         Suite         Colo         Suite         Colo         Suite         Colo         Colo <th< td=""><td>PH         Once (mico- mos         Colum         Poiss- stum         Corbon- stum         Bicor- stum         Suite         Chio- stum         Ni - stum         Fiuo- stum         Boron         Still- stum         Suite         Even stum         Corbon- stum         Bicor- stum         Suite         Chio- stum         Ni - stum         Fiuo- stum         Boron         Suit- stup         Suite         Corbon- stum         Bicor- stum         Suite         Crin         Burn         Suite         Corbon- stup         Suite         Corbon- stup         Burn         Suite         Suite         Corbon- stup         Suite         Corbon- stup         Suite         Suite</td><td>PH         Once mhos         Colum sum of 25°C)         Poiss- sum sum of 25°C)         Color- sum sum sum of 25°C)         NI- sum sum sum sum sum sum sum sum         Filuo- sum sum sum sum sum sum sum sum sum         Baron sum sum sum sum sum sum sum sum sum sum</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>PH         Once mhos         Colum sum of 25°C)         Poiss- sum sum of 25°C)         Colorin sum sum sum sum sum sum sum sum sum sum</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>PH         Once mnos         Columnos         Solumnos         Solumnos</td><td>PH         (micro- mnos)         control         sum         control         standing         sum         standing         sum         standing         <tt>standing</tt>         standing</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></th<>	PH         Once (mico- mos         Colum         Poiss- stum         Corbon- stum         Bicor- stum         Suite         Chio- stum         Ni - stum         Fiuo- stum         Boron         Still- stum         Suite         Even stum         Corbon- stum         Bicor- stum         Suite         Chio- stum         Ni - stum         Fiuo- stum         Boron         Suit- stup         Suite         Corbon- stum         Bicor- stum         Suite         Crin         Burn         Suite         Corbon- stup         Suite         Corbon- stup         Burn         Suite         Suite         Corbon- stup         Suite         Corbon- stup         Suite         Suite	PH         Once mhos         Colum sum of 25°C)         Poiss- sum sum of 25°C)         Color- sum sum sum of 25°C)         NI- sum sum sum sum sum sum sum sum         Filuo- sum sum sum sum sum sum sum sum sum         Baron sum sum sum sum sum sum sum sum sum sum	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PH         Once mhos         Colum sum of 25°C)         Poiss- sum sum of 25°C)         Colorin sum sum sum sum sum sum sum sum sum sum	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PH         Once mnos         Columnos         Solumnos         Solumnos	PH         (micro- mnos)         control         sum         control         standing         sum         standing         sum         standing         standing <tt>standing</tt> standing	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

		33		σ
	Toto	hordness o s C o C O 3		179
tuents in ilion	TDS	Evap 180°C hordness Evap 105°C a s Computed CaC03		404
constituent per million	-111-S	c o S+0 2		2 2
Mineral constituents parts per million	Boron	8		0.27
	Fluo-	ride F		9 0
	, i	trote NO 3		4 • 2 0 • 07 1
million per million ctance value	Chio -	e Dir	W2800	0 n 0 1
0	Sulfate	504		2 • 1 4 9 1 1 0 3 1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
ports per equivalents percent re	1 0			3 199 4 8 8 4 8
por	Carban -	ote CO 3	TIN	0
.c	Potos -	е у s	YDRO U	1 22 S 0
constituents	and a start of the	° Z	MOJAVE HYDRO UNIT	9 3 3 4 4 8 4 7 8
Mineral co		Е л- 5 У	Σ	1 19
×	0   L	° C	W28C0	5 4 5 3 7 2 5
Specific conduct-	ance -	mhos at 25°C)		6 1 0
	Н		INU8	7.7
Temp	when	in ° F	DRO SU	un V
State well number		Date sampled	MIDDLE MOJAVE HYDRO SUBUNIT	9N/ ZW- 1F 1 S 7-18-63

	Tatal hardness as CaCO3		103	244	107	73	172	221	185	211
constituents in per million	T D S Evap 180°C Evap 105°C Computed			608 636	235		360 383	484	494	538
constituent per million	5111- Ca S102		20	25	27	25	21	26	22	18
Mineral parts	Borda		1	0.41	0.14		0 • 0 0	0.15	0•38	0 • 1 8
	Fluo- ride		l I	0 • 4	0 • 6		0 • 4	0.7	0 • 7	0 • 4
	n		I I	3.9 0.06 1	2•5 0•04 1	1	3•1 0•05 1	3•0 0•05	2 • 4 0 • 04	0.0
million e value	Chlo - ride CI	w2800	28 0•79	87 2.45 23	21 0.59 15	0°850	37 1。04 17	51 1.44	64 1•80 24	1.47 1.47
millior per eactanc	Suffale S0.4	-	1	171 3.56 34	30 0.62 15	1	85 1.77 28	112 2.33 31	108 2•25 30	134 2.•79 31
parts per equivalents percent r	Bicar - bonate HCO3		198 3•25	271 4.044	171 2.80 69	170 2.79	207 3•39 54	227 3•72 49	212 3.47 46	284 4 65 52
per per	Carbon - ate CO3	N I T	0	0	0	0	0	0	0	0
E	Patas - s um K	YDRO U		0 • 05	1 0 • 0 3 1	8	4 0.10 2	3 0 • 08 1	3 0.08 1	0.08
constituents	Sodium Na	MOJAVE HYDRO UNIT	1	125 5•44 53	43 1•87 46	1	68 2•96 46	3 • 04 40	91 3.96 51	110 4.•78 53
Mineral co	Magne - stum Mg	Σ	1	15 1.23 12	6 0•49 12		9 0.74 11	15 1.23 16	14 1•15 15	1• 13 1•07 12
2	<b>٤</b> ۲۰۰۰ ۲۰ ۲۰	W28E0	41 2.05	73 3•64 35	1.65 41	29	54 2.69 41	3 <b>•</b> 19 42	2 51 2 33	3 • 14 3 • 14
Specific conduct-	micro - mhos at 25°C)		488	940	392	458	600	740	758	820
	Hd	SUBUNIT	7 • 7	8 1 8	7 • B	7.9	8 2	7 • 8	7 • 7	
Temp	when sampled in°F		1	1	1	i 1	ł	65	63	1
State well	led	LOWER MOJAVE HYDRO	9N/ IE- IM I S 7-17-63	9N/ 1E-15N 2 S 7-16-63	9N/ 2E- 8N 2 S 7-16-63	10N/ 2E-31R 1 S 7-17-63	9N/ 1W- 4G 1 S 7-18-63	9N/ 1W-10D 2 S 7-17-63	9N/ 1W-13H 2 S 7-16-63	10N/ 1W-33E 1 S 7-18-63

## MINERAL ANALYSES OF GROUND WATER 1963 COLORADO RIVER BASH DRAINAGE PROVINCE (X)

	Tatal hardness as		78
tuents in Ilian	T D S T of ol Evop 180°C hardness Evop 105°C os		
constituent per million	Sil1- Co SiO 5	]	1
Mineral constituents parts per millian	Boron B		
Σ	Fiuo Fide		
	N		
parts per million equivalents per million percent reactance value	Chlo- ride CI	0060X	0.59
parts per million equivalents per million percent reactance valu	Bicor - Sulfate banate HCO ₃ SO ₄		
rts pe uivalent rcent	Bicor - bonote HCO3	5	1 • 70
pa pe	Carbon - ate COz		
s in	Potos - sium K	RO UNI	
Mineral constituents	Sodium No	DALE HYDRO UNIT	
ineral c	Mogne - Sodium sium Mog No		
W		X09A0	
Specific conduct-	(micro - Colcium mhos of 25°C) Co		80 80 91
	Hd	o sue	8 2
Temp	wnen sampled in ° F	S HYDR	
State well number	Date sampled	TWENTYNINE PALMS HYDRO SUBUNIT	1N/ 9E-31A 1 5 5-28-63

## MINERAL ANALYSES OF GROUND WATER 1963 COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	Total hardness as CaCO3		104	417	180	279	86	175	60	ω Ω
stituents in million	T D S hu Evap 180°C hu Evap 105°C Computed C		190 183	772 647	382	474	368 376	332 303	296	150
constituents per million	Sill- co SiO_2		12	17	14	14	13	14	12	10
Mineral parts p	Boron B		0.05	00 •	0.02	0.07	0.34	0.05	0.29	0.07
	Fluo- ride F		0 • 6	0•4	0.4	0•4	4 • 0	0•4	4•0	8 0
	N: - trate NO3		•0	7.8 0.13 1	22. 0.35 6	14• 0•23 3	•	4 • 3 0 • 07 1	•	•
million e value	Chla - ride Cl	X 1900	0 • 25 8	84 2 • 37 23	41 1.16 21	67 1.89 25	27 0.76 13	53 1•49 31	43 1•21 27	0.28
million per eoctonc	Sulfate S0.4		20 0.42 14	242 5 • 04 4 8	97 2.02 36	155 3•23 42	128 2.666 4.7	64 1.33 27	82 1•71 38	0 54
ports per equivalents percent ri	Bicar - banate HCO3	F	149 2•44 78	181 2•97 28	126 2•07 37	143 2•34 30	140 2•29 40	119 1.95 40	94 1.54 35	1 • 36 • 0 • 0
pe pe	Carbon - ate CO 3	HYDRO UNIT	0	0	0	0	0	0	0	0°0 3 4 7 7
Ē	soto9 E u is		0•10 3	5 0•13 1	5 0.13 2	6 0.15 2	5 0.13 2	4 0.10 2	0.05 1	0.05
constituents	Sodium No	WHITEWATER	23 1•00 31	50 2.17 20	1•91 344	50 2.17 28	97 4•22 70	37 1.61 31	80 3•48 74	1.61 70
Mineral co	Mogne- s-um Mg	WH X19D7	0 • 0 8 3 8	23 1.89 18	0.41 7	7 0.58 7	0 • 1 6 3	2 9 0	0	0
¥	Colcium	X19D0	40 2•00 63	129 6.44	3•19 37	100 4.99 63	31 1•55 26	3•24 65	24 1•20 25	0 285 28
Specific conduct-	mhos at 25°C)		300	930	560	780	580	525	470	227
	И	UNIT SUBAREA	8 • 2	7.9	8 • 1	8 8	8 2	8 S	8 • 2	\$ \$
Temp.	when sampled in ^a F	SUBUN RO SUE	1		72				75	1
State well number	led	COACHELLA HYDRO SUBUNIT INDIO HYDRO SUBAN	55/ 7E-16K 1 S 5- 1-63	5 <i>S/</i> 7E-22K 1 S 4-30-63	55/ 7E-33C 1 S 5- 1-63	55/ 8E-31D 1 5 4-30-63	55/ 8E-33N 1 S 4-30-63	65/ 8E- 7P 1 S 4-30-63	65/ 8E-10A 4 S 4-30-63	65/ 8E-27H 1 S 4-30-63

TABLE E-4 MINERAL ANALYSES OF GROUND WATER 1963 COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	3 22		0	0	<u>م</u>	
c	Total hardnes as CaCO3		19	399	18	
tuents in Ilion	Evap 180°C hordness Evap 180°C hordness Evap 105°C a s Computed CoCO3		160 163	1284	442 441	
constituent per million	Silit- co 5:02		6	Ø	10	
Mineral constituents parts per million	Boron B		0.07	00 •	0.29	
	Fluo- ride F		2 • 0	0 • 2	5.0	
	Ni - trote NO 3		•	8.7 0.14 1	•	
million e volue	Chlo- ride Cl	x1900	7 0.20 8	399 11.25 60	54 1.52 22	
per per eactanc	Sulfate 504		43 0.90 36	344 7•16 38	110 2.29 33	
ports per equivalents percent r	Bicor - bonate HCO3	F	82 1•34 53	18 0•30 2	180 2.95 42	
per per	Carbon - ate CO 3	DRO UNI	0.07 3	0	0.20 3	
n i	Potos - stum K	ЕК НҮО	0.03 1	4 0.10 1	1 0.03	
constituents	Sodiu M N o	WHITEWATER HYDRO UNIT (CONTINUED)	52 2•26 85	250 10.87 57	160 6.96 95	
Mineral co	Mogne. sium Mg	W 7061X	0•08 33	0•49 033	0•16 2	
X	Colcium Co	×1900	0.30 11	150 7.49 40	0°50 9	
Specific conduct-	(micro- mhos at 25°C)		275	2000	725	
	Ч	I T 3AREA	ຕ ອ ໝ	7.1	φ • ∞	
Temp	wnen sampled in ° F	SUBUNI RO SUE	1		l	
State well T	bed	COACHELLA HYDRO SUBUNIT INDIO HYDRO SUBAREA	65/ 9E-30C 1 S 4-30-63	75/ 8E-22M 1 S 4-30-63	75/ 9E-16K 1 S 4-30-63	

	1
E-5	0.000
ш	Ì
Ч	1
TAI	1

	Totol hordness as CoCO3		71		301	27				
tuents in Ilion	T 0 S E Ewap 180°C E vop 105°C Computed CoCO3		210		420	244				
constituent per mittion	Siii- co Si02		20	8	1	13	-	l D	1	
Mineral constituents parts per million	Boron B		0 • 06	1	0.01	0.08	1	-	8	
	Flua- ride F		1	8		0 • 7		1		
	NI - trote NO3		8	1	1	Ö	1	1	ł	
million e value	Chio - ride Ci	Y0100	12 0•34	18 0.51	33 0.93	14 0.39 11	19 0.54	17 0.48	13 0.37	
per per	Sulfote S04		32 0.67	l	89 1•85	12 0•25 7	8 8	1	ł	
ports per equivalents percent re	Bicor - bonote HCO3	0 UNIT	161 2.64	193 3.16	294 4.82	174 2.85 78	306 5 • 0 2	156 2.556	188 3•08	
pd per	Corbon - ote CO3	к нүрк	1	1	}	5 0.17 5	l I	8 0•27	7 0•23	
i	Potos - sium K	IA RIVE	3 0.08		4 0•10	0.03 1		8		
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	53 2.30	8 1	35 1•52	70 3•04 84		ł		
Minerol co	Magne - sium Mg		2 0•16	ł	18 1•48	0.08 2		4 9	8	
W	Colcium	YOIAO UBAREA	25 1•25	1	91 4.54	9 0.45 13		8	8	
Specific conduct-	micro - mhos at 25°C)	HYDRO SUBUNITYOIAO PLAIN HYDRO SUBAREA YOIAI	363	598	726	368	521	339	351	
	Hq	YDRO	8 • 2	7•6	7.6	8•4	8 • 2	8 2	8•4	
Temp	when sampled in ° F	AL PL	1	ł	ľ	1	1	1	1	
		ANA F	s e	2 \$	2 S	2 S	1 S	1 S	1 S	
State well number	Date sompled	LOWER SANTA ANA RIV HYDRO East coastal Plain	55/11W-21M 3-19-63	55/11W-21N 2 3-19-63	55/11W-25R 2 3-13-63	55/11W-28H 2 10- 3-63	55/11W-28K 1 3-15-63	55/11W-29C 1 3-15-63	55/11W-33H 1 3-15-63	
		Ľ								 

-		1								
	Total Mardness os CoCO3				637		208		285	
tuents in Ilion	T D S E vop 180°C hordness E vop 105°C o s Computed Co C 03				1021 858		408 354		464	
cansti ler mi	Sili- co SiO ₂		1	1	1	1	17	1	15	
Mineral constituents parts per million	Boron B		8	1	0.05	1	0.07	1	0 • 04	
	Fluo- ride F		1	1	1	l T	0 • 2	1	0 • 2	
	NI - trate NO 3		1	1	5. 0.08 1	1	•0	1	7. 0.11	
million per million ctance value	Chlo - ride Cl	Y 01 00	18 0.51	25 0.71	365 10•29 66	13 0•37	28 0.79 13	57 1.61	135 3 81 48	
0	Sulfate S0.4		I I		77 1.60 10	1	77 1.60 26	1	0.65 8	
parts per equivalents percent re	Bicer - bonote HCO3	LINN O	380 6•23	218 3.57	221 3.62 23	140 2•29	235 3 85 62	218 3.57	209 3 • 4 3 4 3	
p e q	Carbon - ole CO 3	ER HYDR	8 0•27	0	l	8 0•27	0	I	l I	
Ľ.	Potos - srum K	IA RIVE	1	1	0•13 1	I	0.05 1	1	0 • 08	
constituents	Entpos	SANTA ANA RIVER HYDRO UNIT (CONTINUED)	1	1	64 2 • 78 18	1	43 1•87 31	1	47 2。04 26	
Mineral co	Magne - sium Mg	S YOIA1 (	3	}	34 2.80 18	ļ	19 1•56 26	1	19 1.556 20	
¥	Colcium Co	YOIAO UBAREA	}	1	199 • 93 63		2 • 5 9 4 3	l P	4 83 53	
Specific conduct-	(micro- mhos at 25°C)	SUBUNIT HYDRO S	624	535	1666	313	600	627	813	
	Hd	YDRO	8 e 4	7 • 8	7.7	8 6	7 • 8	7.9	7.5	
Temp	sampled in ° F	RIV H TAL PI	1		1	1	67	1		
		ANA COAS	<i>с</i> л	2 S	1 S	1 S	1	2 S	1 v	
State well number	Date sampled	LOWER SANTA ANA RIV HYDRO SUBUNITYOIAO East coastal plain hydro subarea	55/11W-34F 3-15-63	55/11W-368 2 3-13-63	55/11W-36P 1 3- 4-63	55/12W-12C 1 3-19-63	65/10W- 5C 1 6-28-63	65/10W- 6B 2 3- 6-63	65/10W- 6H 1 9-11-63	
		2	ыл 	un	un	<u>IU</u>	-0			

	WATE
E E-5	GROIND
TABL	ЧC
4F	YSFS
	I VI

Tatal	hardness a s Co C O 3		1404				599	622	268	379	411
TDS	Evap 180°C 1 Evap 105°C Computed		4260 2657				1130	1150	575 544	730	830
Silt-	~		14	l			23	22	20	24	20
Boron	40		0•28		1		0 • 35	0.15	0.17	0.15	0.15
Flug-	ride F-		0.2	l	1		0 • 7	0 • 7	0 • 7	0.6	0.7
ı Z	trote NO3		°		1	_	1.0	4.5	1•0 0•02	8.5 0.14	6.4 0.10 1
Chlo-	c i	V0100	1596 45°01 95	16 0.45	406 11.45		141 3•98 22	3.05 17	86 2.43 26	2.65 23	100 2.82 22
Sulfate	\$0.4		0	ļ	1		367 7•64 43	431 8.97 50	119 2.48 27	257 5.35 47	318 6.62 51
		TINU O	143 2•34 5	300	331 5•43		378 6.20 35	349 5•72 32	261 4.28 46	203 3•33 29	205 3 26 26
Carbon -	01e CO 3		0	1	1		0	0	0	0	0
,	E ¥	A RIVER	0.10	1	1		6 0.15 1	0.08	3 0.08 1	0.13 1	0.15
Sadium	o Z	ANTA AN CONTINU	450 19.57 41	1	ł		130 5.65 32	120 5•22 29	91 3.96 42	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	104 4.52 35
Mogne -	En-s		62 5.10 11	1	I	YOIA3	45 3.70 21	5 65 30	19 1.56	23 1.89 16	2, 38 18
Colcium	° U		460 22•95 48	1	1		166 8•28 47	142 7•09 40	3.79 4.0	114 5•69 49	117 5.84 45
(micro-	mhos at 25°C)	SUBUNIT	4700	508	1783	SU	1585	1558	901	1088	1206
Hd			7.4	8 <b>1</b>	8 0		7.9	7.5	7.6	7 • 7	7.7
when	in °F	RIV H	89	1	1	NARR	1	ţ	1	64	
	Date sampled	LOWER SANTA ANA EAST COAS	65/10W-7J 4 5 4-2-63	65/11W- 1N 2 S 3- 4-63	65/11W- 3R 2 S 3-15-63	SANTA ANA	35/ 8W-25J 1 5 8-22-63	35/ 8W-33K 1 S 8-22-63	35/ 9W-33H 1 S 8-22-63	35/ 9W-33K 1 S 8-21-63	35/ 9W-350 1 S 8-22-63
	when pH (micro- Catcium Magne- Sadium Palas- Carbon- Bicar- Sulfate Chilo- Ni- Flua- Boron Sili- TDS	When PH Color Mode Colorum Magner Sadium Patos Carbon Bicer Suitate Chlor Nin Fluar Boron Sili IDS sampled PH (micco - Calcium Magner Sadium Patos - Carbon Bicer Suitate Chlor Nin Fluar Boron Sili IDS in PF mhos sium ote bonote bonote ride trote ride Co at 25°C) Ca Mag No K CO3 HCO3 SO4 C1 NO3 F B SiO2 Computed	when sampled in °F     PH (micro- in °F)     Collor- (micro- in °F)     Collor- (micro- in °F)     Nicro- (moro- in °F)     Nicro- (moro- (moro- in °F)     Nicro- (moro- (moro- (moro- (moro- moro- (moro- moro- (moro- (moro- moro- (moro- moro- (moro- (moro- moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (moro- (mor	Concertion         Mogne         Sodium         Poins         Corron         Suite         Chio         Ni         Fivo         Born         Site         Tobal           mhos         sium         ore         ore         suite         ride         ride         ride         site         Co         serve 109C           mhos         sium         ore         ore         ore         suite         ore         soon 109C         co         serve 103C         consured         co         serve 103C         serve 10	Image         Contract         Contract         Suiture         Even PBC         Filler         Biller         Tide         Niller         Biller         Tide         Solu         Solu         Solution         <	(micro- micro- mose         colume sum sum sum sum sum sum sum sum sum sum	(micro- micro- mose         Colicium sium sium sium sium sium k         Poins- sium sium k         Coron- sium sium sium sium ote         Defent sium sium sium ote         Suite- sium sium sium sium sium sium sium sium			(micro- micro- lations)         Calcum sum         Nogra- sum         Sadum sum         Partos- sum         Surface sum         Surface sup         Surface sum         Surface sup         Surface sup <td>(mcros) mbos         Caritum sum         Most sum         Corran         Barerial sum         Caritum sum         Barerial sum         Sum         Sum         Sum sum         Sum sum sum         Sum sum sum         Sum sum sum         Sum sum sum         Sum sum sum         Sum sum sum sum         Sum sum sum sum         Sum sum sum sum         Sum sum sum sum         Sum sum sum sum         Sum sum sum sum         Sum sum sum sum sum sum         Sum sum sum sum sum sum sum         Sum sum sum sum sum sum sum sum sum sum s</td>	(mcros) mbos         Caritum sum         Most sum         Corran         Barerial sum         Caritum sum         Barerial sum         Sum         Sum         Sum sum         Sum sum sum         Sum sum sum         Sum sum sum         Sum sum sum         Sum sum sum         Sum sum sum sum         Sum sum sum sum         Sum sum sum sum         Sum sum sum sum         Sum sum sum sum         Sum sum sum sum         Sum sum sum sum sum sum         Sum sum sum sum sum sum sum         Sum sum sum sum sum sum sum sum sum sum s

1 1	ol s o3		24	605	138	357	496	368	415
-	C hard		15.						
	Total Evap 180°C hardness Evap 105°C a s Camputed CoCO3		269 258	540 536	209 195	522 486	682 641	504 472	5 8 5 8 6
constituent per million	Silt- co 5:02		30	ł	ł	1	1	1	
Mineral constituents parts per million	Boron B		• 00	0 • 03	0.04	0.02	0.02	0.02	• 0 4
	Fluo- ride F		0•3	0 • 3	0 • 2	0 • 3	0•3	9 • 0	0 0
	Ni - trote NO 3		20. 0.32 8	91•2 1•47 15	3.5 0.06 2	71.2 1.15 13	55°2 0°89 7	54.4 0.88 10	0 98 0 • 6 1 9 1
million per million ctance value I I	Chlo- ride Cl	Y0100	23 0.65 16	78 2.20 23	6 0.17 4	0, 93 11	61 1.72 14	41 1.16 13	1, 47 1, 33 12
0	Sulfale S04		0.12 3	41 0.85 9	0.25	61 1.27 15	42 0.87 7	41 0.85 10	0 9 2 4 4 8 9 2 8 8 8 9 9 2 8 8 8 9 9 2 8 8 9 9 2 8 8 9 9 9 9
parts per equivalents percent ri	Bicor - bonate HCO ₃	0 UNIT	189 3.10 74	305 5•00 53	178 2•92 77	320 5•24 61	525 8•60 71	349 5 • 72 66	8 510 9 35 7 5
ba be	Carbon - ote CO3	R HYDR	0	0	12 0.40 11	0	0	0	0
Ē	Potos - sium K	A RIVE	0.05 1	0.05 1	0.05 1	0.05 1	3 0•08 1	0.05 1	0 0 0 0
constituents	E n z N	SANTA ANA RIVER HYDRO UNIT	25 1.09 26	31 1•35 14	22 0•96 25	35 1.52 17	47 2.04	32 1•39 16	2°57
Minerol co	Mogne- sium Mg	S Y0181	6 0.49 11	32 2.63 27	8 0•66 18	2°5 2°14 25	3 • 13 26	27 2•22 25	5 3 3 5 4 1 7 1 7 3 7 3 7 3 7 3 7 4 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
2	Colcium		53 2•64 62	111 5.54 58	42 2•10 56	100 4.999 57	136 6•79 56	103 5.14 58	5 • 59 5 • 59
Specific conduct- ance	(micro- mhos at 25°C)	SANTA ANA RIV HYDR SUBUNITYOIBO CHINO HYDRO SUBAREA	430	923	337	799	1089	803	6 6
Ha		AREA	7.5	7.4	8° 2	7.9	7 • 7	0 • 0	7 • 4
Temp. when	sampled in ° F	RIV F	ł	1	1	1	1	1	
		ANA HYD	1 S	1 S	1 S	1 S	1 2	1 S	l S
State well number	Date sampled	MIDDLE SANTA ANA CHINO HYDF	15/ 6W-29R 1 3-22-63	25/ 7W-10M 1 3-13-63	25/ 7W-15A 1 10-23-63	25/ 7W-21L 1 3-13-63	25/ 7W-22K 3-13-63	25/ 7W-23E 1 3-13-63	3-13-63 1 S
5	Dat	MIDDL	15/ 3-2	25/ 3-1	25/ 10-2	25/ 3-1	25/ 3-1	25/ 3-1	25/ 3-1

	ess 03		32	105	149	169	172	150	583	
Ē	Totol hordnes Coco3		2 13							
	TDS Even 180°C hordness Even 105°C o s Computed CaC03		215 212	180	220 236	260 248	245	230 223	900	
consti per m	5:11- co Si02		30	28	23	20	20	18	24	
Minerol constituents ports per million	Boron B		0.32	0 • 02	00 •	0.62	0.36	0.03	1.00	
	Flua- ride F		0 • 3	0 • 4	0 • 5	0•4	0•4	0 • 2	0.6	
	NI - trate NO 3		4 • 0 0 • 06 2	4 • 0 0 • 06 2	37. 0.60 16	11• 0•18	10. 0.16	20 • 0 • 32 9	26. 0.42 3	
million value	Chlo - ride Cl	Y0100	18 0.51 15	7 0•20 7	0.25	16 0.45 11	15 0.42 10	0.20	24 0 • 68 5	
r million s per million reoctance valu	Sutfate S0.4		0.17 5	21 0.444 15	0.69 19	24 0•50 12	23 0.48 12	28 0.58 16	346 7•20 54	
parts per equivalents percent re	Bicor - banate HCO3	HYDRO UNIT	163 2.67 78	139 2.28 77	132 2•16 58	188 3.08 73	190 3.11 75	156 2•56 70	303 4.97 37	
par per	Corbon - ote CO3		0	0	0	0	0	0	0	
Ľ	Potos - sium K	A RIVER	0.03	0.05 2	0 • 05 1	0.08 2	3 0.08 2	0.05 1	0•13 1	
constituents	Sodium No	SANTA ANA	20 0.87 24	19 0.83 28	14 0.61 17	19 0.83 19	17 0•74 17	17 0•74 20	32 1•39 11	
Minerol co	Magne- sium Mg	S YOIE2	7 0.58 16	6 0•49 16	0 • 82 23	9 0.74 17	9 0.074	0 • 74 20	3 e 13 2 4	
W	Colcium Co	YOIEO	41 2.05 57	32 1•60 54	2°15 59	2 6 2 4	2°54 69	2 • 25 60	171 8•53 65	
Specific conduct-	micro - mhos of 25°C)	REA	348	287	351	412	410	360	1140	
	н	SUBUNIT RO SUBAI	0	7.5	8 ° 0	7.9	8 • 1	7 • 8	7 • 7	
Temp.	when sampled in°F	HYDRO LL HYC	1	1	1	1	1	ł	1	
		ANA R HI	2 S	1	s n	2 S	2 2	1 S	1 S	
Stote well number	Date sompled	UPPER SANTA ANA HYDRO BUNKER HILL HYD	15/ 3W- 9E 3-25-63	15/ 3W-16A 4- 3-63	15/ 3W-17C 3-25-63	15/ 4W-13F 5-31-63	1S/ 4W-13G 5-31-63	1S/ 4W-13L 1 5-31-63	1N/ 4W-29F 1 3-22-63	
		⊃								

	~							
	Totai hordness os CoCO3		1276	477	619	447	1149	
tuents in Ilion	T D S Evap 180°C Evap 105°C Computed (		2080 1764	903	1582 1459	900	2162	
constituent per million	Sili- co Si02		26	36	21	30	34	
Mineral constituents parts per millian	Boron B		0.10	0.52	0•30	0.11	0 . 13	
	Fluo- ride F		0 • 5	0 • 4	0 • 2	0 • 5	0°6	
	NI - trate NG 3		5 ° 0 0 ° 08	30° 0°48 3	• 0	0.5	0.7	
million e volue	Chlor ride C1	Z0300	880 24.82 79	280 7•90 53	575 16.22 65	188 5•30 40	560 15.79 47	
per	Sulfate S0 4		134 2.79	123 2.556 17	173 3.60 14	157 3 • 27 2 4	601 12.51 37	
t len	Bicor - bonote HCO ₃	111	239 3.92 12	249 4.08 27	322 5•28 21	293 4 80 36	325 5•33 16	
equivo	Carbon - ate CO3	YDRO UN	0	0	0	0	0	
Ē	Potos - sium K	REY H	10 0.26 1	4 0.10 1	3 0.08	6 0.15 1	9 0.23 1	
constituents	Sodium No	SAN LUIS REY HYDRO UNIT	160 6.96 21	128 5•57 37	295 12•83 51	105 4.57	240 10•44 31	
Mineral co	Mogne sium Mg	S, Z03A1	123 10.12 31	19 1.56 10	23 1.89	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	105 8.64 26	
×	Coterum Co	ZO3AO	308 15•37 47	160 7.98 52	210 10.48 41	108 5•39 39	287 14•32 43	
Specific conduct-	(micro - mhos at 25°C)		3175	1499	2360	1280	3156	
	Hd	SUBAR	7 • 4	7.3	7 • 7	7 e 4	7 • 5	
Temp	wnen sampled in°F	SUNIT	1				ľ	
		0 SUE	1	1 \$	2 S	4 N	S S	
State well number	Date sampled	BONSALL HYDRO SUBUNIT MISSION HYDRO SUBAREA	115/ 4W- 5K 1 9-27-63	115/ 4W- 8K 1 9-26-63	115/ 4W- 8N 2 10-24-63	115/ 4W-18L 4 9-27-63	115/ 5W-13L 1 S 1- 8-63	
		BON	115.	115.	115	115.	115	

	WATER 1963 VCE (Z)
E-6	PROVID
TABLE	ANALYSES OF G HEGO DRAINAGE
	MINERAL

	Total hardness as CaCO3		338		694		535		838		1261				
tuents in Ilion	<u>T D S</u> Evop 180°C hordness Evop 105°C o s Computed Co C 03		006	853	1478	1380	1396	1229	2242	1906	2268	1976			
constituent per million	5111- 60 5102		37		43		43		42		40				
Mineral constituents parts per million	Boron B		0.17		0.12		0.18		0.20		0.23				
	Fluo- ride F		0.4		0 • 2		0 = 2		0 • 4		0 • 2				
	NI - trote NO3		65° 1.05	œ	125.	9	1.71	1 00	111.	9	190.	3.06			
million per million ictance value	Chilo - ride Ci	20700	216 6.09	40	231	30	399	52	819	12	840	23.69			
8	Sulfate SG4		172 3.58	26	416 8,66	40	158	7.29C	151	10	192	4.00			
parts per equivalents percent re	Bicor - bonote HCO3		178 2•92	21	282	21	250	4°10	261	13	195	3.20			
parts equivo percer	Corbon - ote CO3	0 UNIT	0		0		0		0		0				
.Ľ	Potas - s, um K	О НҮДК	0•08	7	0°05			0 0 0	2	0 0 0	5	0.13			
Mineral constituents	Sodium N a	SAN DIEGO HYDRO UNIT	162 7.04	51	187	37	225	7 • / 0 48	365	65	207	9 • 00 26			
ineral co	Mogre- sium Mg	S. 207A3	39 3•21	23	63	24	62	2 • 10	75	19	153	12.58 37			
×	Colcium Co	Z07A0	71 3.54	26	174 8.68	2 0 2 m	112	22.27	212	10• 20 32	253	12•62 37			
Specific conduct-	(micro- mhas at 25°C)		1310		1850		1950		3000		3050				
	Hd	SUBUNIT SUBAREA	7 • 1		7 e 3		7 e 4		7.3		7•4				
Temp.	wnen sampled in°F	HY DRO HY DRO	ł		l a		l I		1		1				
State well number	led	LOWER SAN DIEGO HYDRO EL CAJON HYDRO	155/ 1E-31R 1 S 11- 6-63		165/ 1W- 1G 1 S	5010 I	165/ 1W- 2K 6 S	11- 0-03	165/ 1W-11P 4 S	€0=0 =TT	165/ 1W-12J 3 S	11- 6-63			
		L C	15		16	-	16		16	-	16	-1	 	 	

TABLE E-G MINERAL ANALYSES OF GROUND WATER 1963 SAN DIEGO DRAINAGE PROVINCE (Z)

uents in lion	T D S Totol Evop iBOaC hardness	Evap 105°C os Computed CoCO3	computed CoCO3	voo 100°C os computed CoCO3 9584 2702 7805	supuled (2003) 9584 2702 7805 25360 5808	Simputed Coco3	<pre>control coctog 9584 2702 7805 7805 25360 5808 19402 19402 3002 1237 2659 3122 1189 2911 2911</pre>	Section of the sectio	computed         cost         ost           9584         2702           7805         5808           194.02         1237           3002         1237           3122         1189           25911         16590           15704         4371           15704         4986
constituents per million		5:02 C		202	202 19	202 1920 202	20 20 20 20 20 20	2002 2020 2021	20.2 20 20 21 21 21 17
Mineral parts	Boron			1.17					
	Fiuo-			0 • 2	0 0 2	0 2 0 2 0 4 0 0 4 0 0 4 0 0 4 0 0 0 4 0 0 0 0	0.2		
	N: - trote NO3			ċ				0 1	
er million ts per million reactance value	Chlo ride Cl		Z1100		Z1 30 30	21 10 300 2	21 21 30 30 30 30 30 30 30 30 30 30 30 30 30	24 3 30 10 10 24 S	21100 2109.11 10740 10740 302.87 901 25.41 25.41 25.41 25.450 35.50 35.50 35.50 247.60 247.60 2528 8780 247.60 2528 8780 2528 8780 2528 8780 2528 8780 2528 2528 2528 2528 2528 2528 2528 25
reactance	Sulfate S0.4			817 17.01 13	817 17.01 13 1475 30.71	817 17.01 13 1475 30.71 90.71 12.87 12.87	817 13 1475 1475 1475 9 9 12.87 12.87 12.87 12.87 12.87 12.87 12.87 12.81 12.81 12.81 12.81 12.81 12.81 12.81 12.81 12.81 12.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 13.81 147 147 147 147 147 147 147 147 147 14		817 13 1475 1475 1475 9 9 12.87 12.87 12.87 13 1146 13 13 1146 23.86 9 531 11.06
parts per equivalents percent re	Bicor - bonole HCO3			541 8.87 7					
p eq	Carbon - ate CO3		RO UNIT	RO UNIT 0	RO UNIT	0 0 0			
u s	Potos - sium K		VA HYDR	NA НҮDR 0.26	NA HYDR 0.26 100 2.56	NA HYDR 100 2.556 1 0.10	NA HYDR 100 2.556 2.556 0.10 0.10 0.23	NA HYDR 0.26 2.55 1 0.100 2.55 1 1.00 0.23 1.05 1.05 1.05	NA HYDR 100 2.556 2.556 0.10 0.10 0.23 1.05 0.23 0.23 0.23 0.25 0.25 0.15 0.25 0.26 0.10 0.10 0.10 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.
constituents	sod iu m		TIA JUANA HYDRO UNIT	IA JUA 1900 82.61 60	IA JUAN 1900 82.61 60 5200 226.10 226.10	IA JUAN 1900 82.661 5200 5200 226.10 226.10 226.10 226.10 966 21.00 21.00	IA JUA 1900 82.61 660 226.10 652 21.05 21.05 21.05 21.05 21.05 21.53	IA JUA 1900 82.651 5200 226.10 465 21.09 46 630 27.339 27.339 27.339 186.09	IA JUAN 82.611 82.6510 5200 226.10 630 21.695 21.695 21.695 21.695 186.09 186.09 186.09 186.09 1140
Mineral c	Mogne- sium Mg		T	2111	N00 0111	001 NNM NH1	140 001 000 031	0H0 460 000 0H4	100 010 140 801 000 011
×	Colcium		ZIIAO	0.00	- NN 2002	200 100 1000	5000 NNH 0N5 0N5	NEO CUM RUA HUN ROOR	000 NEO 6NM 000 000
Specific canduct- ance	(micro- mhos at 25°C)			00	00 00	20000	0 0 0 0	0 0 0 0 0	
	Ц		UBUNIT HYDRO SUBAREA	0 5UB4	11 T SUBA	111 10 7.2 7.4 7.3	11 T SUBA 7 • 2 7 • 4 7 • 3 7 • 5	11 T SUBA 7.0 SUBA 7.3 7.3 7.8 7.8	11 T • 2 7 • 4 7 • 3 7 • 6 7 • 8 7 • 8 6 • 9
Temp	sampled in ° F		SUBUN A HYDR	A HYDR	A HYDRN 70 70	A HYDR 70 66	А НҮДКИ 70 66	А НҮДЛИ 66 69	о <b>ч</b>
State welt number	Date sampled		TIA JUANA HYDRO SUBUNIT TIA JUANA HYDRO SUBUNIT	TIA JUANA HYDRO TIA JUAN 185/ 2W-32H 1 S 10- 7-63	TIA JUANA HYDRO TIA JUAN 185/ 2W-32H 1 S 10- 7-63 185/ 2W-32P 4 S 4- 9-63	IA JUANA HYDRO TIA JUAN 85/ 2W-32H 1 S 10- 7-63 85/ 2W-32P 4 S 4- 9-63 85/ 2W-33K 4 S 11- 4-63	IA JUANA HYDRO TIA JUANA HYDRO 85/ 2W-32H 1 5 10- 7-63 85/ 2W-32P 4 5 4- 9-63 85/ 2W-33K 4 5 11- 4-63 85/ 2W-35L 1 5 10-31-63 1 5	IA JUANA HYDRO TIA JUANA HYDRO 85/ 2W-32H 1 S 10- 7-63 85/ 2W-32P 4 S 4- 9-63 85/ 2W-33K 4 S 11- 4-63 11- 4-63 10-31-63 10- 4-63 50 5 S	TIA JUANA HYDRO TIA JUANA HYDRO 185/ 2W-32H 1 S 185/ 2W-32P 4 S 44 9-63 185/ 2W-33K 4 S 11- 4-63 11- 4-63 10-31-63 10- 4-63 10- 4-63 10- 7-63 10- 7-63 10- 7-63 10- 7-63

### RADIOASSAY OF GROUND WATER

### LOS ANGELES DRAINAGE PROVINCE (U)

STATE WELL NUMBER	DATE	TOTAL ACTIVITY
Oxnard	Hydrologic Subarea U-	-03.Al
IN/21W-31A1	6-18-63	0.3 <u>+</u> 1.1
1N/22W-15B3	6-14-63	3.4 <u>+</u> 1.1
1N/22W-18E1	6-10-63	0.5 <u>+</u> 1.1
TN/55M-55C1	6-18-63	0.5 <u>+</u> 1.1

### Central Hydrologic Subarea U-05.A5

25/13W-28H1	6-26-63	2.8 <u>+</u> 1.2
	6-26-63	0.3 <u>+</u> 0.36

d MICROMICROCURIES PER LITER - PROBABLE ERROR COMPUTED AT ONE STANDARD DEVIATION IN MICROMICROCURIES PER LITER WITHOUT SELF ABSORBTION CORRECTION.

### RADIOASSAY OF GROUND WATER

### LAHONTAN DRAINAGE PROVINCE (W)

STATE WELL NUMBER	DATE SAMPLED	TOTAL ACTIVITY
Lower Mojave	Hydrologic Subuni	t W - 28.E0
9N/1E-10D2	7-17-63	0.4 <u>+</u> 0.36
9N/1W-13H2	7-16-63	0.2 <u>+</u> 0.36
lon/lw-33E1	7-18-63	0.3 <u>+</u> 0.36
9N/le-lml	7-12-63	0.61 <u>+</u> 1.1
9N/1E-15N2	7-16-63	0.1 <u>+</u> 0.36
9N/2E- 8N2	7-16-63	0.72 <u>+</u> 1.1
10N/2E-31R1	7-17-63	0.3 <u>+</u> 0.36

### RADIOASSAY OF GROUND WATER

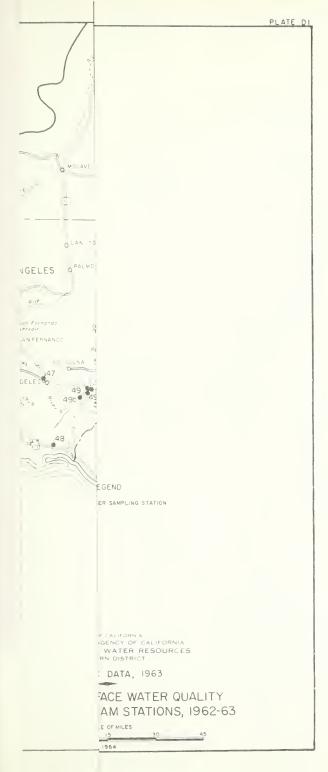
### COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

STATE WELL NUMBER	DATE SAMPLED	TOTAL ACTIVITY uuc/1 ⁰		
Indio Hydrologic Subarea X - 19. D7				
5s/7E-16K1	5- 1-63	0.2 <u>+</u> 1.1		
55/7E-22K1	4-30-63	13.8 <u>+</u> 3.7		
55/7E-33Cl	5- 1-63	0.2 <u>+</u> 1.1		
55/8E-31D1	4-30-63	0.2 <u>+</u> 1.1		
55/8E-33N1	4-30-63	0.1 <u>+</u> 1.1		
65/8E- 7Pl	4-30-63	0.3 <u>+</u> 1.1		
6s/8e-10A4	4-30-63	0.1 <u>+</u> 0.36		
6s/8E-27H1	4-30-63	0.3 <u>+</u> 1.1		
6s/9E-30C1	4-30-63	0.1 <u>+</u> 0.36		
75/8E-22M1	4-30-63	7.4 <u>+</u> 2.3		
75/9E-16K1	4-30-63	4.3 <u>+</u> 1.5		

a MICROMICROCURIES PER LITER - PROBABLE ERROR COMPUTED AT ONE STANDARD DEVIATION IN MICROMICROCURIES PER LITER WITHOUT SELF ABSORBTION CORRECTION.

### TABLE E-IO

### RADIOASSAY OF GROUND WATER


### SANTA ANA DRAINAGE PROVINCE (Y)

STAT E WELL NUMBER	DATE SAMPLEC	TOTAL ACTIVITY		
Chino Hydrologic Subarea Y-Ol.Bl				
15/6w-29R1	6-13-63	0.1 <u>+</u> 1.1		
	7- 2-63	0.4 + 0.36		
2S/TW-IOMI	3-13-63	10.4 <u>+</u> 2.9		
25/7W-21L1	3-13-63	16.4 <u>+</u> 4.0		
25/7W-22K1	6-11-63	0.2 <u>+</u> 0.36		
2S/7W-23El	3-13-63	7.2 + 2.2		
	6-12-63	0.1 <u>+</u> 0.36		
25/7W-27A1	3-13-63	18.3 <u>+</u> 4.3		
	5-28-63	26.35 <u>+</u> 0.8		

Bunker	Hill	Hydrologic	Subarea	Y-01.E2	
15/3W-16A1		6- 1		0.2 +	

a MICROMICROCURIES PER LITER - PROBABLE ERROR COMPUTED AT ONE STANDARD DEVIATION IN MICROMICROCURIES PER LITER WITHOUT SELF ABSORBTION CORRECTION





#### STREAM SAMPLING STATIONS 1962-1963

Ste.		Sta.	
No.	Station Name	No.	Station Name
կես	Cuyama River near Garey	56a	All American Canal near
44b	Santa Ynez River at		Pilot Knob
	Cachuma Reservoir	56b	Colorado River below
45e	Santa Ynez River near Solvang		Morelos Dam
450	Matilija Creek above Dam	56c	Colorado River near Blythe
46	Santa Clara River at Los	56a	Colorado River at Colorado
	Angeles-Ventura County Line		River Intake
46a	Sante Clars River mear Sante Paula	57	New Hiver at International Boundary
460	Piru Creek near Piru	58	New River near Westmorland
46d	Sespe Creek near Fillmore	59	Alamo River at International
460	Sante Paula Creek near	15	Boundary
	Sante Faula	60	Alano River near Calipatria
47	Los Angeles River at	62	Ventura River near Ventura
.,	Figueroa Street	62	San Luis Rey River near Pala
48	Los Angeles River at	63	Escondido Creek near
	Pacific Coast Highway		Harmony Grove
49	Ric Nondo at Whittier Narrows	64	San Dieguito River below
49a	Mission Creek at Whittier		San Pasqual
	Narrows	65	San Diego River et
490	Rio Hondo above Spreading	-	Old Mission Dam
	Grounds	65a	Forester Creek at
50	San Gabriel River at		Mission Gorge Road
	Whitther Narrows	650	Spring Valley Creek near
500	Warm Creek at Colton	1.	La Pressa
50c	Warn Creek at San Bernardino	65c	San Diego River near
50d	San Gabriel River at Azuse Poverhouse	66	Mission Gorge Road Tia Juane River at
53	Sante Ane River near	00	International Boundary
51		67	Mojave River near Victorville
SLa	Arlington Sants Ana River below	67a	Mojave River at the Porks
278	Prado Dam	68	Whitewater River near
510	Santa Ana River near Mentone	00	Whitewater
51c	Santa Margarita River near	68n	Salton Sea at Salton Sea
100	Fallbrook		State Park
51e	Santa Ana River near Norco	685	Whitewater River near Mecca
54	Colorado River near	69	Colorado River Aqueduct at
	Topock, Arizona		La Verne
55	Colorado River below	70	Los Angelea Aqueduct near
	Parker Dam		San Fernando
56	Colorado River at	86	Chino Creek near Chino
	Yuma, Arizona	89	Lake Elsinore at North Shore



# ____

_

.

- - -



INDEX TO MONITORED AREAS*

#### Name

#### CENTRAL COASTAL DRAINAGE PROVINCE (T)

Paso Robles Hydro.	logic Subunit
Santa Maria Hydrol	logic Subunit
Cuyama Valley Hydr	rologic Subunit

#### LOS ANGELES DRAINAGE PROVINCE (U)

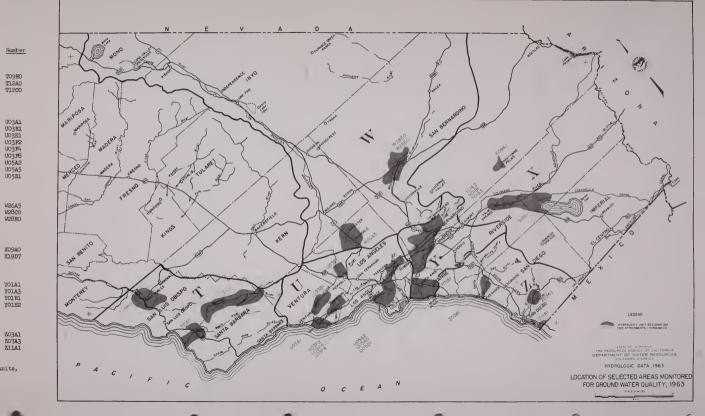
Oxnard Hydrologic Subarea	
Santa Paula Hydrologic Subarea	
Eastern Hydrologic Subarea	
East Las Pasos Hydrologic Subarea	
Conejo Valley Hydrologic Subarea	
Thousand Oaks Hydrologic Subarea	
West Coast Hydrologic Subarea	
Central Hydrologic Subarea	
Main San Gabriel Hydrologic Subarea	

#### LAHONTAN DRAINAGE PROVINCE (W)

Lancaater Hydrologic Subarea	W26A5
Middle Mojave Hydrologic Subunit	W28CO
Lower Mojave Hydrologic Subunit	W28EO

### COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

Twentynine Palms	Hydrologic Subunit	X09.
Indio Hydrologic	Subarea	X1.9


### SANTA ANA DRAINAGE PROVINCE (Y)

East Coastal Plain Hydrologic Subarea
Santa Ana Narrows Hydrologic Subarea
Chino Hydrologic Subarea
Bunker Hill Hydrologic Subarea

#### SAN DIEGO DRAINAGE PROVINCE (2)

Mission Hydrologic Subarea	ZOBA
El Cajon Hydrologic Subarea	ZOTA
Tia Juana Hydrologic Subarea	ZILAI

*Monitored areas may include only a portion of the hydrologic units, subunits, or subareas listed.







RD

## THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

SEP 25 1972 JUN 21 REC'D

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-50m-12,'64(F772s4)458

### 399688

333000	TC32h
California. Dept.	C2
of Water Resources.	A2
Bulletin.	no.]30:63
SCIENCES	Appx.D-
LIBRARY	c.2



LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

	Call Number:
399688 California. Dept. of Water Resources. Bulletin.	TC824 C2 A2 no.130:63

